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Abstract

The homogenisation method with multiple scale expansions is used to investigate the slow and isothermal flow of generalised Newtonian fluids
through anisotropic porous media. From this upscaling it is shown that the first-order macroscopic pressure gradient can be defined as the gradient
of a macroscopic viscous dissipation potential, with respect to the first-order volume averaged fluid velocity. The macroscopic dissipation potential
is the volume-averaged of local dissipation potential. Using this property, guidelines are proposed to build macroscopic tensorial permeation
laws within the framework defined by the theory of anisotropic tensor functions and by using macroscopic isodissipation surfaces. A quantitative
numerical study is then performed on a 3D fibrous medium and with a Carreau—Yasuda fluid in order to illustrate the theoretical results deduced

from the upscaling.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Understanding and modelling the flow of non-Newtonian
fluids through porous media is of major importance in many bio-
logical systems or processes of the petroleum, pharmaceutical,
food, cosmetic, textile, paper and polymer composite indus-
tries. The flowing fluids involved in the above application fields
usually display complex behaviour, which can exhibit shear
thinning/thickening effects, elasticity, anisotropy, yield stress,
evolving substructures ... In order to better understand the
above complex fluid flows, previous studies have mainly focused
on flows through isotropic porous media or on on-axis flows
through regular arrangements of parallel cylinders. Considered
fluids are generalised Newtonian fluids (see the review of [1]),
yield stress fluids [2—4] and viscoelastic fluids [5,6]. In gen-
eral, the resulting macroscopic flow laws look like modified
versions of the isotropic or 1D Darcy’s law [7]: the relation-
ship between the macroscopic pressure gradient and the seepage
velocity is similar to the constitutive relation between the shear
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stress and strain rate in the flowing fluid at the pore scale
[8].

However, porous media involved in industrial processes or
biological systems often exhibit structural anisotropy, and flow-
ing conditions are rarely parallel with the symmetry planes or
axes of the porous microstructures. For such situations, the flow
of non-Newtonian fluids through these media becomes more
problematic. Corresponding tensorial macroscopic flow laws
are rare, even for fluids which rheology is slightly more com-
plex than that of Newtonian, i.e. for the generalised Newtonian
fluids. As a first step towards the study of more sophisticated
fluids, more recent works have analysed numerically slow off-
axis flows of some incompressible “simple” inelastic fluids
through elementary anisotropic fibrous media [9-12,4,13]. The
anisotropy of the macroscopic flow law was found to depend
on an intricate coupling between the fibrous microstructure and
the rheology of the flowing fluid. For instance, the transverse
flow law through a square arrangement of parallel circular cylin-
ders displayed isotropy for Newtonian fluids, whereas it can
exhibit significant tetratropy for power-law fluids [10]. Simi-
lar trends have been discussed concerning the flow of a shear
thinning fluid through regular arrangements of equal capillaries
[8]. Hence, from their numerical results, Wodds et al. [9] have
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first proposed an orthotropic macroscopic flow law for the 2D
transverse creeping flow of power-law fluids through rectangu-
lar arrays of parallel fibres with elliptical cross sections. More
recently, we have pursued their work, extending the domain of
validity of their model. We have also tried to provide a methodol-
ogy to build macroscopic tensorial flow laws of power-law fluids
through 2D orthotropic fibrous media: permeation models have
been established studying numerically, i.e. empirically, macro-
scopic isodissipation curves resulting from the pore scale flow
[13]. In this paper, we would like (i) to consolidate the above
methodology and (ii) to see whether it can be well-suited to
other viscous fluids flowing through any anisotropic 3D porous
media:

e The pore scale slow flow of a large set of generalised Newto-
nian fluids (Section 2) is considered and upscaled using the
method of homogenisation with multiple scale expansions
[14,15](Section 3). Notice that this method has already been
used to determine the structure and properties of macroscopic
balance and constitutive equations for slow flows of Newto-
nian fluids [16], power-law fluids [17-19] but also Bingham
fluids through porous media [20]. Also notice that other types
of upscaling techniques have also been already used to anal-
yse the problem, such as for example the volume averaging
method [21-25]. Here, the homogenisation method was cho-
sen because it provides us (i) restrictions to be fulfilled by the
considered fluids an equivalent macroscopic description to be
possible, and (ii) theoretical results from which key properties
of the macroscopic flow law can be further explored (Section
4).

It is proved theoretically that the macroscopic viscous drag
force f, which characterises the local fluid resistance to the

flow, can be seen as the gradient of a macroscopic viscous
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dissipation potential (@), with respect to the first-order macro-
scopic seepage velocity (v(?) (Section 4.1):

D)
f=- vy

This important property is useful for the development of
macroscopic permeation laws: as examples, 3D tensorial
forms of the macroscopic flow laws are proposed when porous
media exhibit orthotropy, transverse isotropy or isotropy,
within the framework proposed by the theory of anisotropic
tensor functions [26-29].

The last section illustrates the theoretical developments car-
ried out in previous sections. Hence, the pore scale flow of
a Carreau—Yasuda fluid through a 3D rectangular arrange-
ment of fibres with elliptical cross sections is first simulated
with a finite element code. Numerical results are then used
build isodissipation surfaces, from which a macroscopic
orthotropic permeation law is identified.

2. Fluid flow description at the pore scale
2.1. Problem statement

As shown in Fig. 1, the porous medium is considered as a peri-
odic assembly of a Representative Elementary Volume (REV)
of the porous microstructure. The REV occupies a total volume
ey of typical length /i.y. The considered REV is made of a
rigid solid phase of volume 2, which is saturated by a non-
Newtonian fluid of volume £2;. A no-slip boundary condition on
the fluid-solid interface I is assumed:

v=0 onl] (1

Fig. 1. The porous medium is seen as a periodic assembly of a Representative Elementary Volume (REV). Basic principles of the approximation of a scalar field ¢

along an arbitrary X axis using asymptotic expansions (here up to the second order).
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v being the fluid velocity field. Likewise, the fluid is supposed to
be incompressible, isotropic and purely viscous. The mass and
momentum balances for an isothermal steady slow flow (inertial
effects are neglected) of such an incompressible viscous fluid are
respectively:

V.v=0 ins, 2)

V.-1=Vp inf2. 3)

where V is the differential operator with respect to the physical
space variable X, p is the incompressibility pressure and where T
is the viscous stress tensor. 7 is supposed to be a unique function
of the strain rate tensor D = (Vv + TVv) /2. In this work, we
will focus on the cases where

T = 23D, €]

where the fluid viscosity n > 0 is supposed to be a function of
the equivalent shear strain rate yeq = ~/2D : D. We restrict the
present study to the case where

d

5&:%q>—m. 5)

Many well-known rheological models satisfy (4) and (5), the
most famous being the Newtonian fluid, shear thinning or thick-
ening versions of the power-law (Ostwald—deWaele) fluid, the
Cross fluid or the Carreau—Yasuda fluid [30,31]. . . Let us remark
that the purely viscous models that have been developed in order
to mimic the viscoplastic Bingham and Herschel-Bulkley mod-
els also belong to this group, such as the bi-viscosity model
proposed by Lipscomb and Denn [32,33,2,4], the continuous
viscous model proposed by Papanastasiou [34,3].

It must be pointed out that for all the viscous fluids under
consideration, the viscous stress tensor T can be defined as the
gradient, with respect to the strain rate tensor D, of a viscous
dissipation potential @:

L)
D’
where the viscous dissipation potential @ is positive and such
that

I
oD D=0

(6)

T =

— 2D =0)= 0. @
The dissipation potential @ can also be expressed as a function
of Yeq so that

T=— = =
D~ 3eq D

z —2Xp_ 2D 8)
“ 5D Veq

In the last equation, teq = 1yeq is the equivalent shear stress.
The equivalent shear stress teq and the equivalent shear strain
rate eq verify:

Pais =7:D =20D : D = 03, = Teqieq )

where Py;s is the volumetric mechanical dissipation. Finally, it is
important to notice that restriction (5) implies that the dissipation

potential @ is convex:

:(Dp — Dy).
(10)

9P
VDo Dy € E3 ® E3, ®(Dp) — (Do) = =

2.2. Separation of scales

In order to obtain a macroscopic description of the above
local physics, it is assumed, as illustrated in Fig. 1, that the
geometrical length /.y as well as the characteristic local length
I of the physical phenomena under consideration are supposed
to be small compared to the characteristic length L of the sample
or macroscopic excitation. By assuming (for a sake of simplicity)
that [,y and [ are of the same order of magnitude, such a scale
separation condition is directly connected to the scale separation
parameter ¢, that must be small for a macroscopic equivalent
model to exist:

e= — <1, (11)

e For the considered fluid flow problem, the local length /.
can be seen as the characteristic thickness of the sheared
fluid at the pore scale. As an example, by considering the
in-axis transverse flow of power-law fluids through rectangu-
lar arrangement of parallel cylinders with an elliptical cross
section, the characteristic length is found to be close to half
the gap between two neighbouring fibres [9,13].

e In case of a laboratory permeation experiment performed
with an homogeneous porous sample and under homoge-
nous testing conditions (e.g. constant pressure gradient), the
macroscopic length L. is typically the height of the sam-
ple. For more complex situations, i.e. in case of a permeation
problem trough a porous medium displaying macroscopic het-
erogeneities (varying upon a characteristic length L;) and
subjected to a macroscopic heterogeneous loading (e.g. pres-
sure gradient varying upon a characteristic length L), the
macroscopic length L. would be the smallest length between
Ly and L.

2.3. Dimensionless pore scale description

Adopting the methodology proposed in [35], we introduce in
Egs. (1) and (2) the following dimensionless variables (subscript
“c” denotes characteristic values)

1 1 p

y* = —X, v = —v, p*
le Ve

Apc Uc

Dv

T*(D*) = 1. (12)

Tc

The vector y* is the so-called non-dimensional microscopic
space variable: it is obtained normalizing X using the charac-
teristic length [. In the above dimensionless variables, pressure
and deviatoric stresses have been distinguished, because they are
associated with two different physical phenomena. The pressure
p, which typical variation in the considered problem is Apc, is
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directly connected with the fluid incompressibility constraint
(2). By contrast, shear stresses, of characteristic value 7., are
induced by viscous deviatoric deformation of the fluid during
the flow. Hence, the formal dimensionless set of equations that
describes the flow is thus written

V*.v¥=0 in £
V*.1* = QV*p*  inQf (13)
vF=20 on ™,

where V* is the dimensionless gradient operator with respect to
the microscopic space variable y* and where

T = 2p* (D" (14)
and
A
Q=L (15)
Tc

The order of magnitude of the dimensionless number Q can be
estimated. For instance, during a permeation experiment per-
formed with an homogeneous porous sample of height L. and
under homogenous testing conditions, the fluid flow is driven
by a balance between local volumetric viscous drag forces of
characteristic value f; = 1./l., and the imposed macroscopic
pressure gradient of characteristic value Ap./L [35,19]:

Apc _ _ Te

- _(’)(fc)_O(lc>. (16)
so that

Q =0, (17)

Hence, it is possible to rewrite the local dimensionless descrip-
tion as

V*.v¥=0 in £
eV* . 7* =V*p* inf2f (18)
vi=0 onl™*.

3. Upscaling

The homogenisation procedure is then achieved by intro-
ducing the multiple scale coordinates [14,15]: the macroscopic
dimensionless space variable, x* = X/L, and the microscopic
dimensionless space variable y*, both being linked by x* = ey*.
If (11) is well-satisfied, then y* and x* can be considered as two
independent space variables, and the physical variables of the
problem, i.e. the velocity and the pressure, can then be seen
as a priori functions of y* and x*, i.e. v*(y*) = v*(x*, y*) and
p*(y*) = p*(x*, y*). Consequently, the spatial differential oper-
ator V* can be written as

l
v*:vy*jtfC

c

Ve = Vi + 6V (19)

where Vy+ and V,+ represent spatial differential operators with
respect to y* and x*, respectively. As illustrated by the graph
plotted in Fig. 1, we now assume that the velocity and pressure

fields can be expressed in the form of asymptotic expansions in
powers of ¢ [14,15]:

v = V*(O)(X*, y*) + 8V*<1)(X*, y*) + 82V*(2)(X*, y*) .
p* — p*(O)(X*’ y*) + Sp*(])(X*, y*) + 82[)*(2)(X*, y*) 4o,
(20

where the functions v*® and p*® are of the same order of mag-
nitude and are supposed to be £2-periodic with respect to the
dimensionless space variable y*. By noting

. .
vi>0, D= Vyr v 4TV y 0
— 9 y 2 9
T @)
pi) - VeV Ve v @
2
and

DO =p:®  pO=p-Vyp® o, (22)

and then

)-,:(0) = 2D*0 . p*O) )7:(1) = V4D*0 . p*(1),

*(2>_\/2D*(1> D*(D 4 4p*© . p*@), (23)

the dimensionless strain rate tensor D* and shear strain rate )'/:q
involved in (14) now respectively become

D* = D*O 4 eD*D 4 2D 4 ... (24)
722 = 0 iV 4 2 (25)
The viscosity n* is then expressed as a Taylor expansion around

. (0
V-

() =1 (V*(O))-i-

*
*2 eV ey e
9y, *(0>

o e ey 4
— i +eviy +) +---
A oq2) 4o ki® e
(26)
By assuming that
1 ak *
izl 0| o=ty < 0('), @
: 3(3/* ) . %(0)
Yeq
the viscosity n* can then be put in the form:
=00 4o ® 4+ 2 4 (28)

where the 7*®)’s are of the same order of magnitude. Assumption
(27) ensures that n*©@ = n*(j/:éo)). This is a necessary con-
dition for the problem to be homogenisable. From a physical
point of view, this means that within the neighbouring of ye( ),
the variation of n* with yeq must not be too sharp. Under such

circumstances, the viscous stress tensor can be expanded as

7 =750 4 oD 4 27D 4L (29)
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where the 7%() are of the same order of magnitude and where,
in particular,

The method then consists in incorporating the above expansions
in the dimensionless system (18) and identifying the successive
orders of ¢. At the lowest (zero) order one obtains:

V- v¥ =0 in&f
Vyp* @ =0 ingf 31)
vO =0 onl™

At the next order, the following set of equations is obtained:

Ve - v O 4 v v =0 in 27,
Vy* . T*(D*(O)) = Vy* p*(l) + Vx* p*(o) in .Qik, (32)
v =0 on '™,
3.1. First-order pressure
From (31b) it is concluded that

so that at the first order, the pressure does not depend on the
local space variable y*, i.e. p*(©) is constant in the whole REV.

3.2. Self-equilibrium of the REV

The set of Egs. (31a), (31c¢), (32c) represents a boundary value
problem for the y*-periodic unknowns v*© and p*(, in which
the macroscopic pressure gradient Vs« p*(©) is considered as a
known and constant volumetric source term (at this stage of the
homogenisation process). The corresponding weak formulation
is

Vu*eH, / (D*) : D¥(u*) dv*
o

+ / ut - Ve pr@dvr =0, (34)
2

where H is a Hilbert space of vectors u* defined on £}, y*-
periodic, divergence free and zero-valued over I'*. To obtain
(34), H was ascribed the following inner product:

(u*, v g = /* V™ : Vv dV™. (35)

1

Adopting a reasoning similar to that proposed in [19] in the
case of power-law fluids, the convexity property (10) as well
as the last equation are used to obtain the following variational
inequality:

vwreH, Jw")— Jv"®) >0, (36)

where Jis a convex function defined as

Jw*) = / (@*(DE(W") + w* - Ve p* @) dV™, (37)
2

There exists a unique solution w* € H that minimizes J(w*),
i.e. w* = v*©_ This solution depends on the microscopic space
variable y*, the macroscopic gradient of pressure V,«p*© the
rheology of the fluid (rheo), and the porous medium microstruc-
ture (micro):

v = v O v p*© theo, micro) (38)

Accounting for the last result, (32b) now shows that p*“) is also
7D of the imposed macroscopic pressure gradient
Ve« p*© up to an arbitrary y-independent pressure p”*V(x):

a function p

pr) = p/*(l)(Vx* " theo, micro) + p”*(l)(x) (39)

In practice (e.g. the numerical example exposed in Section 5),

the pressure p” *D can arbitrarily be set to O on only one point
of the REV.

3.3. Macroscopic balance equations of the flow

The integration of the mass balance equation (32a) over £2}°,
combined with both the periodicity boundary condition and the
no-slip boundary condition (32¢) on I'* yield the following
compatibility condition, here recasted in a dimensional form:

V- (v" =0 ing, (40)
with
1
(V(0)> = —/ vOqy = h(Vp(O), rheo, micro), 1)
rev J §2

or, in the reverse form:
\Y p(o) = f((v(o)), rheo, micro), 42)

where f is here seen as a volumetric viscous drag force. Egs.
(40) and (42) represents respectively the macroscopic mass and
momentum balance equations for the macroscopic equivalent
continuous medium, within an order O(¢) approximation. More-
over, choosing u* = v*® in (34) yields:

/ Pais DOy av + / vO.vp0dy =o, (43)
2 2

which shows that the first-order macroscopic volumetric dissi-
pation, i.e. —V PO (vOy = _f. (vO)y, equals the first-order
volume average (Pg;s) of local dissipative source Pyis:

Pais AV = (Pais) = (TeqVeq)- (44)

1
—_f. (V(0)> — 5
2

4. Structure and property of the macroscopic flow law
4.1. General form

When the flowing fluid is Newtonian, relation (34) proves
that the drag force f is a linear function of (v, so that Eq. (42)
reduces to a general Darcy’s law. When the power-law model
is used, Eq. (34) shows that f is an homogeneous function of
degree n of (v(?) [17-19], n being the power-law exponent of the
flowing fluid. For other considered viscous models, no similar
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specific property can be established. Hence, in order to further
investigate the general form of the macroscopic flow law for
these fluids, i.e. the relation between f and (v(?), the volume
average (@) of the dissipation potential @ is introduced:

<<;z>>=l / oDy dv. (45)
2 Jo

(@) is convex and positive. The variation d(®) of (@) can be

written as
1
2

1 B
_ 0)
=%/ m0 :D@Av?)dV + - -

d(P) (<1§(D(v(0) +dv?) — o)) dv

1
— / D) : DAV ) dV + - .- (46)
2 Jo
or, by putting u* = dv*? in (34):
1 ©)
d(@)=—f- — [ dv@av+.... (47)
2 Jo,

If we now suppose that (@) can be expressed as a function of
(VO ie. (@) = (D)((V?)), it is possible to write:

d(®) = (D)((vV?) + d(v V) — (D)((vV))

_ ¥(P) ©)

Therefore, as dv(?) — 0, Egs. (47) and (46) allow us to write by
identification:

3(D)

fm
3(vO)

(49)

so that the drag force f is the gradient, with respect to (v(0), of a
macroscopic dissipation potential defined as the volume average
(@) of the local dissipation potential @. As a consequence, the
drag force f obeys the normality rule: when it is plotted in the
velocity space, f is normal to the iso-potential surface passing
through the point which position is defined by (v(?’). Such a
property was recently emphasized numerically (empirically) in
the case of 2D flow of power-law fluids through fibrous media
[13].

At the microscopic scale, we have shown in Section 2 that @
could be expressed as a function of the local equivalent shear
strain rate Yeq. Similarly, it is assumed that at the macroscopic
scale, (@) can be expressed as a function of an equivalent veloc-
ity veq((v(o))), defined as a norm in the velocity space. Hence, a
more convenient form of the drag force f is obtained:

D) Bueq Ieq
=— 50
eq AVO) feqa<v<0>> (50)
where
GIC)
= 51
Jeq Bveq (5D

is the equivalent drag force. feq and veq both verify:

(Pdis) = f- (V(O)) = feqeq- (52)

Lastly, by accounting for the physical arguments used to estab-
lish (16), the equivalent drag force may be expressed as

(Teqyeq> = -

Tc

feq = T (53)
C

From (4) and (12), we get

T = 17E withn =7 Y 54
lc lC

Introducing «, a constitutive parameter that links the char-
acteristic local velocity v, with the macroscopic equivalent
velocity veq by ve = aveq, leads finally to another form

of feq:

1 aveq

feq = Zn I

= f(veq) Withn =1 ( leq) : (55)
C

Notice that due to restriction (5) imposed on the viscosity

n, the function f can be inverted (see Section 4.5). Likewise,

taking into account (55), the macroscopic dissipation may be

expressed as

eq) ) (56)

o
(Pais) = JeqUeq = ﬁﬂvgq withn =17 < ]
c c

Consequently, when it is plotted in the velocity space,
the macroscopic isodissipation surface corresponds to a
constant equivalent velocity. Moreover, the form of the
general macroscopic flow law of viscous fluids under con-
sideration through any anisotropic rigid porous media now
reads

o v

- __ 4

withy = 7 <a;’"’q) . (57)
C

In the next three sections, the expression of veq will be further
specified for cases where the porous microstructures display
orthotropy, transverse isotropy and isotropy.

4.2. Orthotropic porous media

4.2.1. General form

When the considered porous medium displays at least two
orthogonal symmetry planes of unit normals e; and ey (for
instance), i.e. when it exhibits orthotropy with three orthogo-
nal axes ey, ejy and e = ey X ey, standard results of the theory
of representation of anisotropic tensor functions allows us to
express f by the following frame-independent form (for details,
see [26-29]):

f = —(@M; + oMy + emMim) - (v¥), (58)

where the M;’s are microstructure tensors defined as (no sum-
mation on the indices i):

M =e¢®e, i=1L1IIIII, (59)
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and where the scalar rheological functions ¢; may depend on
the studied microstructure, the rheology of the flowing fluid and
on the following velocity invariants, here written in a tensorial
frame-independent form:

Vi =/ (vO) M; - (vO), =111 IIL (60)

For example, when the macroscopic velocity field (v?) is
expressed in the principal reference frame (e, ey, eryr), the
invariant V; corresponds to the absolute value of the principal
velocity component, i.e. to |(vl(-0) )|. Therefrom, by accounting
for (57) and (58) the general form of the macroscopic perme-
ation law through orthotropic porous media can be put in the
form

o 1 ov, 1 ov 1 ov
f=—3nveq (eq — My 4 — Mm)
Iz V1 oWy Vir 0V Vi 0V
vy, 61)

in which veq depends on the three velocity invariants (60) and
where 1 = n(aveq/ o).

4.2.2. Expression for veg

When the flowing fluid is Newtonian (7 = 1) the last rela-
tion, when combined with the momentum balance (42), must
lead to the Darcy’s law

© ! ! ! ©)

Vp™W =—no | —Mi+ —My+ —Myy | - (v?7), (62)
kt kit ki

where the &;’s are the principal values of the permeability tensor.

They are constant. This results in the following constraint for the

equivalent velocity veq:

Veq IVeq
Vi 9V

=cst, {=LILII, nosummation (63)

Therefore, veq may be put in the following quadratic form

Vir\? Vi \ 2
qu = VIZ + (A) + <B) , (64)

up to an arbitrary multiplicative constant (here we set it to 1).
The strictly positive and constant constitutive parameters A and
B depend on the microstructure. They are directly connected
to the anisotropy of the flow in the principal directions: for
a given macroscopic mechanical dissipation, i.e. for a given
equivalent velocity veq, the macroscopic velocity components
equal (vgo))el, ((vg())) /A)ey and ((vg())) /B)eqy in the er, ey and
e directions, respectively. As a consequence, it follows from
(61), (62) and (64) that

ki ==, ki = , k= . (65)
o o o

For non-Newtonian fluids, the equivalent velocity veq must fulfil
the two following constraints: (i) it must be convex with respect
to the V;’s, in order to ensure the convexity of (@), and (ii) it
must be such that any imposed velocity field (v(?) contained in
a symmetry plane of normal e; (i € {LILII}) results in a viscous

drag force f that is also contained in this plane. In other words
(no summation on the index i):

Jveq

Vie {LILII}, =0. (66)

i V=0

Within such a framework, different forms of veq may be pro-
posed. For example, in order to describe the 2D in-plane flow of
power-law fluids through orthotropic fibrous media, the follow-
ing 2D form veq, was proposed [13]:

Ma Ma ‘/H "
= () 67)

This expression of veq introduces two additional constitutive
parameters m, and A. The form that is proposed here for 3D
flows through orthotropic porous media is

vg'a = vgf]a + vgf]b, (68)
where
, . Vir\™ Vin
vgaaa = Vlma + (A) s Vegb = — >
V2 VZ
m= M. (69)

VE+ V2

Such a proposition involves five constitutive parameters A, B,
m,, mp and m. that may depend on the microstructure of the
porous medium and on the rheology of the flowing fluid. In order
to ensure the convexity of (@), m,, mp and m, are assumed to
belong to ]1; +oo[. To ensure the linearity of the flow law when
the fluid rheology tends to that of a Newtonian fluid, m,, my and
m. must tend towards 2, in accordance with (64). Notice that
the form of veq given in (68) and (69) reduce to the 2D form
Veqa Proposed in (67) when the imposed velocity field belongs
to the (ey, eyy) plane. Fig. 2 depicts the shapes of the isodissipa-
tion surfaces, i.e. the equivalent velocity surfaces in the velocity
invariant space, for particular values of m,, my, m.,A and B. This
figure also shows that A and B characterize the anisotropy of the
surfaces veq, Whereas m,, myp and m. control their curvatures.
Using (68) and (69) yields:

m m
il Veq m v Vegb Veqa
= ——Veq In vegp +
Vi m Vegq Vegq
m VIma -1
X | Invega + p —Inveg |,
m,vi Veda
m m
0 Veq m vy Veqb Veqa
= Vegq In vegp +
A% m Veq Veq
-1
m Viia
11
X | Invega + ——— —1Inv ,
( o AMam Vi Ugffa ) “

g 1 (Vi m=l (70)
oV B Veq ’
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Orthotropy
{b) (c)

Fig. 2. Possible shapes of isopotential surfaces veq plotted in the (V1, Vi, Vi) space. Orthotropy, veq is given by (68) with A =2 and B = 3 (arbitrary units):
my =mp =me — 1(a), my =mp =me =2 (b) and my = mp = me — 00 (c). Transverse isotropy, veq is given by (76) with B =3: m — 1 (d), m =2 (e) and
m — oo (f). (): Isotropy, veq is given by (80) and reduces to the Euclidian norm.

where 4.3. Transversely isotropic porous media
"oy = om _ 2(my, — mC)VIVI% When the considered porous medium displays transverse
Uy (V12 + Vﬁ)z ’ isotropy, which axis is for example ey, f takes the form:
m oy, = Om_ 20me — mv)VE Vit an f=-M+emMm)- (v, (72)
s VII 8‘111 (VI2 + ‘/I%)Z
where

Hence, the viscous drag force f can now be estimated from (61),
when the values of [, a, A, B, m,, my, and m. are given. M = M; + My, (73)
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and where the scalar rheological functions ¢ and ¢y depend on
Viir and

v = VOO M- = V2 + V2 (74)

A general form of the macroscopic permeation law through
transversely isotropic porous media is

f:_g vﬂaveqM
2 vV oV

Veq Oeq ©)

+— MIII) (V). (75)
Vi Vi

in which veq depends on V and Vi and where 1 = n(aveq/ lc).

The following form of veq:

" " Vi \"
Ueq = V + ? (76)

is proposed to complete the macroscopic model. As previously,
the parameter m belongs to ]1; 4+-oo[. The various possible and
admissible shapes of isodissipation surfaces (76) are sketched
in Fig. 2, and the macroscopic flow law becomes

a 1% m—2 1 VHI m—2
f=—20( (=) M+— (M) My -9,
2" ((Ueq> + om ( v > m |- (V)

(77)

where n = n(aveq/ lc). When the fluid is Newtonian, m = 2 and
(77) becomes

1 1 ©)
f=—ny| —M+ —Myp | - (v}, (78)

where the principal transverse k| and on-axis k|| permeabilities
are expressed as

2 Bl.)?
ky =<, kH:( o) (79)
o o

4.4. Isotropic porous media

When the considered porous media have no preferred direc-
tion, the permeation law is isotropic, i.e. it is invariant to any
given rotation of the macroscopic flow with respect to the porous
medium. In this case, veq simply reduces to the Euclidian norm
(see Fig. 2):

veq = (V) (80)
and the permeation law (57) can now be written as

al (v ) _

— % WOy wi -
f——gn(v )y with n=n A

81)

If the fluid is Newtonian, the last relation as well as the momen-
tum balance equation (42) yield to the well-known isotropic
Darcy’s law:

10
v = -2, (82)

where k = lg /a is the permeability of the considered porous
medium.

4.5. Reverse form of the macroscopic flow law

For practical reasons, it may be more convenient to express
the macroscopic permeation law (49) in a reverse form, i.e.
vy = (vOy(f). As a matter of fact, by accounting for (42),
i.e. f=Vp© itis then possible to introduce this reverse form
in (40). This leads to a well-posed non-linear boundary values
problem at the macroscale in terms of p®only, when providing
a proper set of associated boundary conditions. For that pur-
pose, we introduce the complementary volumetric dissipation
potential (@.)(f) with the following Legendre transform [36]:

(@) (®) = max(y) {—£- (v) — (@)((V))}. (83)

The convexity of (@) shows then that relation (83) is equivalent
to

(@) () = —F- (vO) — (®)(vV) = (Pais) — (@)((v*))

(84)
Therewith, it is concluded that the reverse form of (49) is
(D)
Oy — _ NP/ 85
(v) of (85)

The macroscopic velocity (V(O)) is then the gradient of (®) with
respect to f. Adopting a reasoning similar to that introduced in
Section 4.1, it is possible to express (85) as

of
Oy = —poq—d 86
(v™) Veq af (86)
which represents the reverse form of (57) with
0(D
Veq = < °>. (87)
afeq

The physical meaning of (@) and (@) is illustrated in the graph
of Fig. 3. The bold curve plotted in this graph is a possible
evolution of the constitutive relation (55). The area below the
curve equals the dissipation potential (@). The area above the

(@ )

) I ,

\

(®)(V,,)
L

0 1%

eq

Fig. 3. Schematic graph showing the evolution of the equivalent viscous force
feq as a function of the equivalent velocity veq. This graph also illustrates the
physical meaning of (@) and (P..)
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curve equals the dissipation potential (@.). The sum of these two
areas equals the mechanical dissipation (Pyis), in accordance
with (52) and (84).

By returning to (86) and by adopting a reasoning identical to
that conducted in the three previous subsections, the following
expressions of feq are proposed:

e Orthotropic porous media

£ = o+ fom (88)
with
m), m, Fi\™ Fn
Jeqa = F1 * + <A’> ’ Segp = B
F2+ F}
e Transversely isotropic porous media
’ ’ FHI m/
fé’&:F’"%—(B,) . (90)
e Isotropic porous media
Jeq = IIfIl. oD
In relations (88)—(90) we have noted
Fi=+/f-M;-f, i=LILIL (92)
and

F=\/F} + F2. (93)

Considering on-axis flows, it can be easily shown that A’ = 1/A
and B’ = 1/ B. For transverse isotropy, it is also possible to show
without major difficulty that m’ = m/(m — 1). For orthotropy
and if m{ = m/, one obtains mj = my/(m, — 1), and my, =
mp/(mp — 1). For general orthotropy, it can be shown that m), =
my/(my — 1),my = my/(my — 1)andm;, = m¢/(mc — 1) when
the flow is contained in (ey, eyy), (er, erp) and (eyy, eqp) planes,
respectively. For other types of flow, we have shown from numer-
ical simulations that the last relations could still be considered
as valid, at least for the considered orthotropic microstructures
(see next section).

5. Illustration

In order to illustrate the theoretical developments of the previ-
ous sections, the flow a generalised Newtonian fluid through an
elementary periodic orthotropic fibrous medium (Section 5.1) is
studied from numerical simulations. Hence, the associated REV
is subjected to a macroscopic pressure gradient Vp® and the
local velocity field v() is computed from the self-equilibrium of
the REV (Section 5.2). This allows to identify the constitutive
parameters «, I, A, B, m,, my and m of the proposed orthotropic
macroscopic flow law (61), (68)(Section 5.3).

5.1. Studied fluid and microstructures

The considered fluid is a Carreau—Yasuda fluid [30,31], which
shear viscosity is expressed as

. ac\ n—1/ac
n=nm+<no—nm><1+(@) ) , (94)

Yo

involving five constitutive parameters, i.e. 1o, oo, Y0, 77 and ac
we have set here arbitrarily to 1Pas, OPas, 1 s~ 0.2 and 2,
respectively. The Carreau—Yasuda fluid was here chosen because
it is often used to model the steady state shear rheology of poly-
meric solutions. By putting n = 1 and y9 = 79/(n0 — Noo) in
(94), also notice that this model can also be well suited as a
regularised version of the Bingham model, in a way similar
to the bi-viscosity model (with a yield shear stress 7g, an ini-
tial viscosity no and an infinite viscosity 1« such as 1o > 1eo0)
[32,33,4].

This fluid is flowing across a square array of infinite and
parallel fibres with elliptical cross-section. A scheme of the REV
is given in Fig. 4. Even if it is very simple, the chosen REV may
be rather closed to that of some unidirectional fibre-bundle mats
used in polymer composites [37]. It exhibits orthotropy, since it
has three orthogonal symmetry planes which unit normals are
ey, e;p and eqpr. The principal normal vectors ey, e;p and ey are
supposed to be aligned with the vectors of the reference frame
e, e and e3 directions, respectively. The dimensions of the REV
are hy, hyy in the e and ey, respectively. Similarly, the major and
minor axis of the cross section of the fibre are noted a; and
ay (see Fig. 4). The aspect ratios of the cross sections of both
the REV and the fibre are identical, i.e. hy;/ h1 = ajp/a; = r. In
this example, we have set 41 = Im and » = 0.5. Moreover, the
volume fraction of fibre ¢ = 7Ta12 / hI2 was arbitrarily set to 0.6.

5.2. Fluid flow computation at the pore scale

To evaluate the constitutive parameters of the macroscopic
flow law, it is first necessary to determine the local velocity field
v(® in the whole REV. As shown in Section 3.2, this can be
achieved by solving numerically the dimensional form of the
self-equilibrium of the REV (31a), (31c), (32¢):

vv® =0 in $2
0 1 () 0270
VPO + Vep =2vDO + (1 + (jog)) D) ing

v =9 onl
(95)

where the macroscopic pressure gradient V p© is given on the
entire REV and where the unknowns v(? and ep(!) are periodic.
Notice that the symmetries of the considered REV, fluid and
loadings, are such that the previous boundary value problem does
not depend on the space variable X3. Therefore, the calculation
of the four unknowns v(lo)(Xl, X5), v(zo)(Xl, X»), vgo)(Xl, X»)
and sp(])(Xl, X5) can be carried out in the 2D space (ey, ef),
so reducing considerably the computation time. Practically, this
non-linear boundary values problem was solved using the Finite
Element software Comsol®[38] with a mixed pressure—velocity
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(b)

Fig. 4. Scheme of the Representative Elementary Volume of the considered microstructure. Dimensions (a), form of the imposed macroscopic gradient V p(® and

resulting macroscopic velocity field (v?) (b).

e

€

Fig. 5. 2D FE mesh used to run simulations.

(P1-P2) formulation. Fine triangular finite elements were used
to mesh the geometry, as depicted in Fig. 5. In order to validate
the numerical procedure implemented in Comsol®, at least in the
case of the transverse flows of Newtonian and power-law fluids
through this type of REV, we have systematically compared our
numerical results to previous ones [10,13]. Thereby, the REV is
subjected to a macroscopic pressure gradient V p©@ of intensity
denoted ||V p©|| and such that (Fig. 6):

\Y p(o) =—|V p(o) ||(sin @¢ cos Oser +sin @s sin Orep+cos grep).
(96)

The corresponding macroscopic velocity (v?) is written
as

vy = 1|(vO) | (sin @, cos Byef + sin @, sin Oyerr + cos @yem),

)

where the angles 6f, 6,, or and ¢, are defined in Fig. 4. An
example of calculation is plotted in Fig. 7, for which a unit
macroscopic gradient is imposed along the vertical axis, i.e.
Vp© = —en (Pa m™!) (¢ = 0).

5.3. Numerical results

5.3.1. On-axis flows: determination of «, l., A and B

In relations (61), (68)—(70), « and [. characterise on-axis
flows along the ey direction. In the case of the particular studied
microstructure, it is possible to express « as a function of /. by
using a mass balance, i.e. 2lcve = rlveq & a =rl/2l. = 1/4..
As a consequence, during permeations along the ey, er; and ey
directions, the principal drag forces fi, fir and fy are respec-
tively linked to the principal velocities (v@);, (v@); and (V@)

Fig. 6. Example of results—the imposed macroscopic gradient is along the vertical axis, i.e. Vp® = —eyy (Pa m™!). (a) Corresponding norm of the local velocity
field |v@]|, the linear gray scale ranges from Om s~! (black) to 0.0114 m s~! (white). (b) Corresponding local shear strain rate J'/ég), the linear gray scale ranges

from 0s~! (black) to 0.155s~! (white).
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Fig. 7. On-axis flows: (a) Evolution of the imposed macroscopic on-axis pressure gradient pf?)ei (i = I 11, III, no summation) as a function of the on-axis macroscopic

velocity field (vl(.o))e,- (i = L1, 111, no summation). Marks represent the simulated results. Continuous lines are prediction (98) combined with (99). (b) Evolution of
I¥ =1./11, A and B with the equivalent velocity veq. Marks represent the simulated results. Continuous lines are prediction (99).
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Therefore, I, A and B can be determined from the knowledge
of permations performed along the principal directions of the
microstructure. This is illustrated in Fig. 7. Marks plotted in
Fig. 7(a) of this figure show the evolution of the imposed on-
axis pressure gradients pf?)ei (i = LILII, no summation) as a
function of the simulated on-axis macroscopic velocity fields
( vgo))ei (i = L 11, III, no summation). For the three on-axis flows,
macroscopic pressure gradients follows a “Carreau—Yasuda-
like” evolution, in accordance with (98). This graph also clearly
reveals the anisotropy of the flow law, as the three curves are
far from being superimposed. The graph (b) in Fig. 7 shows the
evolution of [} = I./t1, A and B (deduced from these numeri-
cal results and (98)) as functions of veq, Where #y1 is defined as
half the gap between two neighbouring fibres (see Fig. 4). These
values display two constant zones, during which the fluid can
be considered as a Newtonian fluid and as a power-law fluid
(n = 0.2), respectively. The two constant zones are linked by a
transition zone which occurs more or less at an equivalent veloc-
ity veq & 412, where I, & 0.037 m s defined as (lcmax =+ lemin)/2
(see Fig. 7(b)). Results also show that A and B tends to dimin-
ish as veq increases: for instance, B ~ 3.5 and A ~ 1.75 in the
Newtonian zone, whereas B ~ 2.48 and A ~ 1.51 in the power-

law one. Moreover, one can notice that /. is of the same order of
magitude as fy1, as already pointed out in earlier studies [9,13].
Lastly, we have fitted the evolution of /;, A and B using the
following expression:

£ = E+ Aftanh (”ém “eq) (99)

A& vg

where £ equals ., A and B, respectively, and where the values
of the constants £, A, ng and vg are reported in Table 1. Also
shown by the continuous lines plotted in Fig. 7 b, such fits fairly
well reproduce the variations of /., A and B and allow a good
modelling of our numerical on-axis (see the continuous lines
plotted in Fig. 7a).

5.3.2. Off-axis flows: determination of my, my and m.

To estimate m,, my and m, isodissipation surfaces veq(Po),
or feq(Po), both corresponding to given values Py of the macro-
scopic mechanical dissipation (Pyg;s), were first determined from
numerical results and plotted in the velocity space (V1, Vi1, Vi),
orin the viscous drag force space (Fi, Fyi, Finr). For that purpose:

e numerical simulations were performed with various val-
ues of (6, 0r) :f =0 and 0 <0 <7m/2,0; =0 and 0 <
of <m/2,0f=m/4 and 0 < @ <7m/2,0;f =m/2 and 0 <

Table 1
Constant parameters used in Eq. (99) to fit the evolutions of [, A, B, m,, my, and
mc With veq.

& + 3 Ag N vg(m s71)
I + 0.037 m 0.0032 m 0.0032 m 0.003

A - 1.63 0.125 0.13 0.0043

B - 2.97 0.5 0.5 0.0031
a - 1.67 0.33 0.24 0.0037
my, - 1.75 0.25 0.22 0.004

me - 1.84 0.16 0.09 0.01
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¢r <m/2, ¢ =m/2 —0;/2 and O <6 < /2, o = /4 +
0r/2 and 0 < Of < /2.

e for given values of (65, ¢r), the norm ||V p(Q| of the imposed
macroscopic pressure gradient was adjusted so that the simu-
lated dissipation V p(© . v(0) equals the prescribed dissipation
Po: this was achieved with an elementary dichotomy which
was found to converge quite quickly (= 10 iterations for a
relative precision of 0.1%).

[=]

Vi m s

R s O e

0.015

0

ik
- 03 02
0.5 ’ Vylm s

The as-determined numerical isodissipation surfaces veq(Fo)
and feq(Py) were respectively fitted with (68) and (88), where
the parameters A = 1/A’ and B = 1/ B’ have been already deter-
mined (see previous section). From these fits, it was first found
that the equalities m} = my/(my — 1), my = my/(my — 1) and
mg = m¢/(m. — 1) are valid. Moreover, as shown in Fig. 8, the
best fits of (68) and (88) allow a rather good description of our
numerical results, in the Newtonian (Fig. 8(a) and (b)), transition
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Fig. 8. Numerical (stars) and fitted (continuous surfaces) isodissipation surfaces veq (a, ¢ and €) and feq (b, d and f), respectively plotted in the (V1, Vi, Vi)
and (Fy, Fi1, Finp) invariant spaces. The surfaces have been determined for Py = 107*W m3 or Veq = 1.256 x 10*ms ! (aand b), hp=10"'W m3 or
Veq =558 x 1073 m s™! (cand d), and Py = 10' W m~> or veq = 2.02 x 10~ m s™! (e and f).
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Fig.9. Evolution of m,, my, and m. with the equivalent velocity veq. Marks have
been determined from the best fits of isodissipation surfaces. Continuous lines
are the prediction of the best fits of (99).

(Fig. 8(c) and (d)) or power-law (Fig. 8(e) and (f)) regimes, even
if the fits are less satisfactory in this last regime. Fig. 9 shows
the evolutions as functions of veq of the constitutive parame-
ters my, my, and m. deduced from isodissipation surfaces. As
for I, A and B, the parameters m,, my, and m. are constant in
the Newtonian and power-law regimes. Once again, they have
been adjusted by using relation (99): as shown from Fig. 9, a
fairly good fit of these values is obtained (see Table 1 for the
corresponding parameters).

6.

Concluding remarks

In this work, the homogenisation method with multiple scale

expansions was used to study the flow of incompressible gen-
eralised Newtonian fluids through porous media at low pore
Reynolds numbers. The following points summarize the princi-
pal results of this study:

A first-order equivalent macroscopic description was obtained
from theoretical developments without any prerequisite at
the macroscale: the resulting macroscopic flow is divergence
free, and its momentum equilibrium is a balance between the
macroscopic pressure gradient and a macroscopic volumetric
viscous drag force characterizing the local fluid resistance.
The viscous stress tensor of fluids under consideration can be
expressed as the gradient of a viscous dissipation potential
with respect to the local strain rate tensor. Whatever the con-
sidered porous medium, it was shown that such a property was
preserved at the macroscale. Indeed, the macroscopic volu-
metric viscous drag force can be written as the gradient of
the volume averaged local viscous dissipation potential, with
respect to the volume averaged velocity field.

e This last property facilitates the formulation and the iden-
tification of macroscopic flow laws: this can be achieved
by studying the evolution and the shape of isodissipations
surfaces. Isodissipation surfaces can be built from perme-
ation experiments by imposing to a given porous medium
macrosopic pressure gradients (or macroscopic flows) with
different orientations. They can also be identified from numer-
ical simulation, as done in this work in the example of a 3D
fibrous medium, by solving the self-equilibrium ((31a, 31c,
32c)) on a REV of this particular porous medium.

e Using the theory of anisotropic tensors functions, the general
expressions of the macroscopic flow laws have then been fur-
ther specified in cases of orthoropy, transverse isotropy and
isotropy. Analytical phenomenological forms were also pro-
posed to model isodissipation surfaces for such anisotropies,
requiring a small number of additional constitutive parame-
ters. Let us remark that other analytical expressions of veq (or
feq) may be established, if necessary.

e In the case of the 3D orthotropic fibrous medium studied
in this work, it was shown that (i) the proposed expres-
sions fit numerical isodissipation surfaces rather well and (ii)
most of the additional constitutive parameters could be linked
with the microstructure, except the curvature parameters m,,
my, and mc, for which it was not possible to establish such
correlations.

Efforts are now focusing on testing the capability of the pro-
posed methodology to model the flow of generalised Newtonian
fluids through more complex anisotropic porous media, such
as woven fabrics and fibrous mats often involved in polymer
composites.
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