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Abstract

The flow of power-law fluids through fibrous media at low-pore Reynolds number is investigated using the homogenization method for
periodic structures with multiple scale expansions. This upscaling process shows that the macroscopic pressure gradient is also a power-law
of the volume averaged velocity field. To determine the complete structure of the macroscopic flow law, numerical simulations have to be
performed on representative elementary volume of porous media. In this paper, this has been achieved on 2D periodic arrays of parallel
fibers with elliptical cross section of different aspect ratios. It is found that macroscopic flow models already proposed in the literature fail
in reproducing numerical data within the whole volume fractions of fibers and aspect ratios ranges. Consequently, a novel methodology is
proposed to establish the macroscopic tensorial seepage law within the framework of the theory of anisotropic tensor functions and using
mechanical iso-dissipation curves. This methodology is illustrated through our numerical results.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Many processes in polymer composites, textiles, papers, oil,
food, cosmetic and pharmaceutical industries involve the flow
of non-Newtonian fluids through anisotropic porous media. In
order to control and optimize such processes, suitable tenso-
rial flow laws are required. When the local Reynolds number
is small, i.e., in the creeping flow regime, lots of theoretical,
experimental and numerical works have been conducted in the
case of Newtonian flowing fluids and isotropic, or anisotropic
porous media. They lead to tensorial forms of the linear 1D
Darcy law (Darcy, 1856; Jackson and James, 1986; Advani
et al., 1994). Efforts are now focusing on the determination of
the permeability tensor in real porous or fibrous microstruc-
tures (Clague and Philips, 1997; Koponen et al., 1998; Song
et al., 2004; Bernard et al., 2005). Due to coupling effects be-
tween the microstructure of porous media and the rheology
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of the fluid, the extension of the Darcy law in the case of
non-Newtonian fluids is complex, even in the creeping flow
regime. Among the numerous works dedicated to this prob-
lem (see the review of Chhabra et al., 2001), most of them
have dealt with power-law flowing fluids, which is the simplest
way to account for purely viscous and non-Newtonian effects
of complex liquids. Resulting macroscopic models are usually
restricted to “simple” porous or fibrous media. Furthermore,
they consist in 1D modified version of the Darcy law. The
anisotropy of many natural or manufactured porous media and
the consequence on the macroscopic flow law are rarely studied
(Fadili et al., 2002). Consequently, tensorial anisotropic models
are scarce.

More recent works have analyzed numerically the anisotropy
of the steady transverse slow flow of power-law fluids through
square or triangular arrays of aligned fibers with circular (Spelt
et al., 2001; Idris et al., 2004) and elliptic (Woods et al., 2003)
cross sections. These works are based on numerical results de-
duced from direct simulation (Spelt et al., 2001; Woods et al.,
2003) or specific boundary value problems arising from an
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upscaling process (Idris et al., 2004). Within large volume
fractions of fibers and power-law exponents ranges, it was
shown that the flow of power-law fluid in the symmetry axes of
the microstructure could be deduced as a good approximation
from that of a Newtonian fluid in the same situation, as already
suggested by Bruschke and Advani (1993). The dependence
between the rheology of the fluid, the anisotropies of the
microstructure and of the seepage law were also clearly un-
derlined. For example, when the cross section of the fibers is
circular and for square and triangular arrangements, the trans-
verse seepage law display isotropy with Newtonian fluids (due
to both the particular symmetries of the studied microstruc-
tures and the linearity of the physics), whereas it is found to be
anisotropic with power-law fluids (Idris et al., 2004). Woods
et al. (2003) have proposed the first and only (to our knowledge)
macroscopic anisotropic model for power-law fluids flows
through porous media from their numerical results. Unfortu-
nately, the proposed model is not written in a intrinsic form,
i.e., in a tensorial form: its expression in a reference frame dif-
ferent from the one they used is not straightforward. Moreover,
as the model is based on lubrication-like assumptions, its do-
main of validity is restricted to microstructures with high vol-
ume fraction of fibers. Indeed, Idris et al. (2004) have shown,
in the case of fibers with circular cross section at mild or low
volume fraction of fibers, that the macroscopic model proposed
by Woods et al. (2003) fails in describing numerical results
deduced from simulation at the local scale. Finally, the appli-
cation of the model to other types of porous microstructures is
not evident.

Thereby, the aim of the present paper is to pursue the work of
Woods et al. (2003), proposing a novel theoretical framework
to build macroscopic tensorial flow law of power-law fluids
through anisotropic porous media. Recently, the structure and
the properties of the macroscopic flow law have been derived
from the fluid flow description at the pore scale by using the
homogenization method for periodic structures using multiple
scale expansions (Shah and Yortsos, 1995; Bourgeat and Mike-
lic, 1996; Auriault et al., 2002): the main assumptions related
to the method, the physics studied at the fiber scale as well as
the principal theoretical results deduced from the upscaling are
briefly recalled in Section 2. The transverse flow of power-law
fluids through square array of parallel fibers with elliptical cross
section is then studied numerically at the fiber scale in Section 3.
The limitation of the model of Woods et al. (2003) is pointed
out. In order to overcome this, a general framework based on the
theory of anisotropic tensor functions is then presented in Sec-
tion 4 to formulate the macroscopic flow law of power-law flu-
ids through orthotropic fibrous media. A new model is proposed
within this framework and using mechanical iso-dissipation
curves. Constitutive parameters of the so-derived model are
then deduced from numerical results presented in Section 3. Let
us remark that the choice of the microstructure is used in this
paper has been done in order (i) to compare our results with data
and predictions of models available in the literature, (ii) to check
the improvements brought by the new proposal. However, the
methodology proposed is applicable to more complex porous
microstructures.

2. Theoretical upscaling

In a previous work (Auriault et al., 2002), the flow law for
a power-law fluid in porous media was upscaled using the ho-
mogenization method for periodic structures with multiple scale
expansions (Bensoussan et al., 1978; Sanchez-Palencia, 1980;
Auriault, 1991). This deterministic theoretical technique allows
to establish the general form of the flow law and its domain of
validity, (i) starting from the description of physics at the scale
of the fibers, (ii) assuming the periodicity of the considered
porous medium and the physical fields (iii) when the condition
of scale separation is fulfilled. The separation of scale is writ-
ten � = lc/Lc, where lc and Lc are the characteristic lengths
of the representative elementary volume and the macroscopic
sample or excitation, respectively. In the following subsections,
we briefly recall the theoretical reasoning and the main results
obtained in Auriault et al. (2002): the reader is referred to this
reference for details about the theoretical aspects of the upscal-
ing.

2.1. Fluid flow description at the pore scale

The REV of the considered local problem is a periodic porous
microstructure of total volume �rev, the rigid solid phase (fibers
in this work) occupying a volume �s . The porous medium is
saturated by a fluid which occupies a volume �l . The fluid is
supposed to be incompressible and purely viscous. Its viscosity
� is assumed to be a power-law function of the microscopic
shear strain rate �̇:

� = �0�̇
n−1, �̇ = √

2D : D, (1)

where �0 is the shear consistency of the fluid, D is the strain
rate tensor defined as a function of the local velocity field v, and
where the power-law exponent n characterizes the strain rate
sensitivity of the fluid. At the pore scale, the mass and momen-
tum balances for an isothermal steady slow flow (inertial effects
are neglected) of such a power-law fluid are, respectively,

∇ · v = 0
∇p = 2�0∇ · (�̇n−1D)

}
in �l . (2)

where the differential operator ∇ is calculated with respect to
the physical variable X. The fluid flow description at the fiber
scale is completed by a no-slip condition on the fluid–solid
interface �:

v = 0 on �. (3)

2.2. Dimensional analysis

Using lc as the characteristic length, it can be shown (Auriault
et al., 2002; Idris et al., 2004) that the dimensionless form of
(2–3) introduces a dimensionless number Q:

Q = �pc

�0

(
lc

vc

)n

. (4)
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If now we consider a filtration experiment performed with a
porous sample of length Lc, the characteristic macroscopic
pressure gradient �pc/Lc is balanced by volumetric viscous
drag forces of characteristic value fc induced by the local shear-
ing of the fluid at a characteristic shear rate vc/ lc (vc is a local
characteristic velocity), i.e.:

�pc

Lc

= fc = O

(
�0

lc

(
vc

lc

)n)
. (5)

According to (5), the order of magnitude of Q must be equal
to �−1 (Auriault, 1991).

2.3. Asymptotic analysis

By following the technique of multiple scale expansions
(Bensoussan et al., 1978; Sanchez-Palencia, 1980; Auriault,
1991), the velocity v and the pressure p are looked for in the
form of asymptotic expansions of powers of �,

{
v = v(0)(x, y) + �v(1)(x, y) + · · · ,
p = p(0)(x, y) + �p(1)(x, y) + · · · , (6)

where the dimensionless macroscopic space variable x=X/L is
related to the dimensionless microscopic space variable y=X/l

by x = �y and where the p(i) and v(i) are periodic on the
REV. Substituting these expansions in the dimensionless form
of the set (2–3) gives, by identification of the like powers of �,
successive boundary value problems to be investigated.

2.4. Macroscopic description

It can be shown by the homogenization process: (i) that the
first order pressure p(0) is constant over the REV and (ii) that
the macroscopic mass and momentum balance equations of the
macroscopic equivalent medium are, respectively,

{∇ · 〈v(0)〉 = 0,

∇p(0) = f(〈v(0)〉, �0, n, microstructure),
(7)

where

〈v(0)〉 = 1

�rev

∫
�l

v(0) dV (8)

is the volume averaged velocity field at the first order, and
where f can be seen as a volumetric viscous drag force. It can
be proved that f is a homogeneous function of degree n of the
volume averaged velocity field 〈v(0)〉:

∀� ∈ R+, f(�〈v(0)〉) = �nf(〈v(0)〉). (9)

As pointed out in Auriault et al. (2002), (7b) can be put in a re-
verse form, i.e., 〈v(0)〉=g(∇p(0), �0, n, microstructure), where
g is an homogeneous function of degree 1/n of ∇p(0). When
g is introduced in (7a), a complete boundary value problem
is obtained at the macroscale in terms of p(0). In Section 4,

expressions of f (or g) are proposed in the case of orthotropic
porous media.

3. Computational filtration experiments

3.1. Studied microstructures and fluids

In order to highlight the influence of the fibrous microstruc-
ture on the macroscopic flow law, i.e., the constitutive relation
f(�0, n, 〈v(0)〉, microstructure), the flow of a power-law fluid
across a square array of infinite, parallel and identical fibers of
elliptical cross section is considered. For a sake of simplicity,
only the flow perpendicular to the fibers is studied, reducing the
problem to a 2D analysis: as shown in Fig. 1, numerical simula-
tion is performed with 2D periodic arrays of elliptical inclusions
of aspect ratio r=b/a, a and b being their radius in the major eI
and minor eII axes, respectively. The sizes of the periodic REV
are l and rl, the volume fraction of fibers c=�ab/rl2 =�a2/l2

ranges from 0 to cmax = �/4. When r �= 1, the microstruc-
tures display two material symmetry axes (dashed-dotted lines
in Fig. 1): eI, eII, so that they are orthotropic. When r = 1,
they are tetratropic: two extra symmetry axes must be taken
into account, i.e., eI + eII and eI − eII (Idris et al., 2004). In
this work, the axes eI and eII of the microstructures have been
chosen to be respectively equal to the reference frame axes e1
and e2 (see Fig. 1). Finally, the flow was investigated with the
following microstructural and rheological parameters: l = 1 m,
c ∈ [0.01; cmax − 0.01], r ∈ [0.2; 5], �0 = 1 Pa s−n and n ∈
[0.3; 1.5].

Notice that these microstructures are identical to those used
in previous numerical works (for r =1, Sangani and Yao, 1988;
Edwards et al., 1990; Berdichevsky and Cai, 1993; Bruschke
and Advani, 1993; Spelt et al., 2001; Idris et al., 2004, and
for r �= 1, Woods et al., 2003). They are also close to those
studied in previous numerical works based on cell-type bound-
ary conditions (see, for examples Epstein and Masliyah, 1972
when r �= 1 and n = 1, and Vijaysri et al., 1999 when r = 1
and n �= 1).

Fig. 1. Square array of elliptical solid inclusions. The periodic representative
elementary volume (REV) of such a microstructure is given by the centered
P2–P1 finite element mesh.
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3.2. Numerical procedure

In order to study the macroscopic flow law, the viscous drag
force f must be expressed as a function of the volume averaged
velocity 〈v(0)〉. For that purpose, one must first determine the
values of v(0) in the whole REV. It can be rigorously shown from
the upscaling procedure (Auriault et al., 2002) that v(0) is the
solution in the REV of the following well-posed dimensional
boundary values problem:⎧⎨
⎩

∇ · v(0) = 0 in �l ,

∇p(0) + ∇�p(1) = 2�0∇ · (�̇(0)n−1
D(0)) in �l ,

v(0) = 0 on �,

(10)

where the unknowns v(0) and �p(1) are periodic, and where
the macroscopic pressure gradient ∇p(0) is given on the entire
REV. As in Idris et al. (2004), this boundary values problem
was solved using the software Femlab� (Femlab, 2004) with
a mixed pressure–velocity (P1–P2) finite element formulation
(see Fig. 1 for a typical mesh used to run the simulation). Hence,
the microstructures are submitted to a macroscopic pressure
gradient ∇p(0) of intensity denoted ‖∇p(0)‖ such that (see
Fig. 1)

∇p(0) = −‖∇p(0)‖(cos �e1 + sin �e2), (11)

where � = ( ̂e1, −∇p(0)). The resulting macroscopic velocity
〈v(0)〉 of intensity ‖〈v(0)〉‖ is such that

〈v(0)〉 = ‖〈v(0)〉‖(cos(� + 	)e1 + sin(� + 	)e2)

= ue1 + ve2, (12)

where 	 = ( ̂−∇p(0), 〈v(0)〉) (see Fig. 1).

3.3. Numerical results: on-axis flows

The flow along the e1 axis (� = 0) is first studied. Due to
the symmetry of the microstructure (Idris et al., 2004), it was
systematically found that 	 = 0. Likewise, in this particular
case, the flow law in (e1, e2) can be put in the classical form
(Bruschke and Advani, 1993; Spelt et al., 2001; Woods et al.,
2003)

f1 = �p(0)

�X1
= −nd

�

c

�0

an−1k∗
1(c, n, r)

|u|n−1u, (13)

where nd is the number of cylinders per unit of cross area (nd =
1/rl2 in this work), k∗

1 is a dimensionless rheological function
that depends on the volume fraction of fibers c, the power-law
exponent n and on the aspect ratio r. When n=1, it can be shown
from (13) that ra2k∗

1 represents the first principal component of
the permeability tensor. Fig. 2 shows the evolution of k∗

1 with
the volume fraction of fibers c for different values of n and r:

• k∗
1 is a decreasing function of c, tends towards infinite when

c → 0 and 0 when c → cmax,
• the role of the microstructure is also revealed by the aspect

ratio r: the higher the aspect ratio, the higher the thickness
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Fig. 2. Evolution of k∗
1 (c, n, r) with the volume fraction of fibers c for

various aspect ratios, i.e., r = 0.2 (a), r = 1 (b) and r = 5 (c) and for various
power-law exponents.
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2h2 between two adjacent vertical fibers (cf. Fig. 1), and the
higher the value of k∗

1 ,
• the increase of the power-law exponent n, i.e., from shear

thinning to shear thickening fluids, yields also to an increase
of k∗

1 at high volume fractions of fiber, this trend being re-
versed at low fiber content,

• numerical results coming from the literature for identical mi-
crostructures have also been plotted in the figure: the present
results show a good correlation with them.

As already underlined by Woods et al. (2003), the flow along
the e2 axis (�=�/2) for those particular orthotropic microstruc-
tures, which is characterized by

f2 = �p(0)

�X2
= −nd

�

c

�0

an−1k∗
2(c, n, r)

|v|n−1v (14)

is entirely known from the knowledge of k∗
1(c, n, r), since the

symmetries of the microstructures yield:

k∗
2(c, n, r) = rn−1k∗

1(c, n, r−1). (15)

The 1D-flow law can (13) involve the rheological function k∗
1 ,

that could be approximated by analytical cell, lubrication or hy-
brid models developed for those kind of fibrous microstructures
and for Newtonian (Happel, 1959; Kuwabara, 1959; Keller,
1964) or power-law fluids (Bruschke and Advani, 1993; Woods
et al., 2003). Nonetheless, the physical meaning of k∗

1 is not
evident in the case of power-law fluids. Instead of (13), another
simple 1D-flow law can be built with the help of the order of
magnitude expression (5). For that purpose the characteristic
velocity vc and length lc related to the microstructure and the
local flow must be evaluated. When the flow is along e1 axis,
it seems reasonable to assume that lc is linked to half the gap
between two neighboring vertical fibers h2 (see Fig. 1). Thus,
we have

lc = 
1h2 = 
1ra

(
1 − √

�√
�

)
, (16)

where �=c/cmax and 
1 a rheological function that can depend
on c, n and r. Using a simple mass balance argument, the
characteristic velocity vc associated with lc can be written as

vc = rl

lc
u = rl


1h2
u = 1


1(1 − √
�)

u. (17)

Consequently, from (5), (16) and (17) it becomes

f1 = − �0

(
1(1 − √
�))2n+1

(√
�

ra

)n+1

|u|n−1u. (18)

Similarly, the flow along the e2 axis is expressed as

f2 = − �0

(
2(1 − √
�))2n+1

(√
�

a

)n+1

|v|n−1v (19)

choosing in this case lc = 
2h1. Note that the symmetries of
the studied microstructures allow to write


2(c, n, r) = 
1(c, n, r−1). (20)

0.1

1

10

0 0.2 0.4 0.6 0.8 1

n=0.3 

n=0.5
n=1

n=1.5

c

cmax

cmax

cmax

0.1

1

10
n=0.3

n=1
n=0.5

n=1.5

0.1

1

10
n=0.3 

n=0.5
n=1

n=1.5

λ 1
(c

,n
,r

=
0.

2)
 

λ 1
(c

,n
,r

=
1)

 
λ 1

(c
,n

,r
=

5)
 

 

 

 

(a)

(b)

(c)

 ∇p(0)

 ∇p(0)

 ∇p(0)

Fig. 3. Evolution of 
∗
1(c, n, r) with the volume fraction of fibers c for

various aspect ratios, i.e., r = 0.2 (a), r = 1 (b) and r = 5 (c) and for various
power-law exponents.

The evolution of 
1 as a function of c is plotted in Fig. 3
for various values of r and n. This figure shows that the val-
ues of 
1 are not constant within the investigated values of



L. Orgéas et al. / Chemical Engineering Science 61 (2006) 4490–4502 4495

c, n, and r, but are O(1). Thus, with the macroscopic flow
law (18), the respective roles of the fiber mean radius a and
aspect ratio r, the power-law exponent n and the normalized
fiber content � on the drag force f1 are more emphasized in
respect to expression (13). In the following, a similar simple
reasoning will be used in order to build the tensorial flow law
(cf. Section 4.3).

3.4. Numerical results: off-axis flow

To further highlight the anisotropy of the flow law, numer-
ical simulations are also carried out by imposing a macro-
scopic pressure gradient ∇p(0) of the same intensity ‖∇p(0)‖
but with an angle 0����. Figs. 4 and 5 show, respectively, the
evolutions of the computed values of ‖〈v(0)〉(�)‖/‖〈v(0)〉(0)‖
and 	 as functions of �, for various volume fraction of fibers,
power-law exponents and aspect ratios. Due to the symmetries
of the REVs, the curves are only plotted for 0����/4 and
0����/2 for r = 1 and r �= 1, respectively. As in Idris et al.
(2004), these figures conjure up the following comments:
• In general, the macroscopic velocity field is not aligned with

the macroscopic pressure gradient, except when �=��/ (�
being an integer,  = 4 if r = 1 or 2 if r �= 1), i.e., when the
pressure gradient is parallel to the symmetry axes: the flow
law displays tetratropy when r = 1 and orthotropy in other
situations.

• When n = 1 and r = 1, the macroscopic velocity 〈v(0)〉 is
always aligned with∇p(0) (	 = 0, ∀�) and its norm is con-
stant: these numerical results, that are induced by the lin-
earity of the problem in this situation, show that the trans-
verse macroscopic flow law is isotropic, even if the fibrous
microstructures display tetratropy.

• The coupling between the fluid rheology and the microstruc-
ture is complex.
◦ For instance, the signs of the deviations �	(�) = 	(�) −

	(0) and �‖〈v(0)〉‖ for shear thinning (n < 1) or shear
thickening (n > 1) fluids are different, sometimes with op-
posite signs (see Figs. 5(a,d,g) and 4(a,d,g) for example).

◦ For Newtonian and shear thickening fluids, the anisotropy
is less and less pronounced as the volume fraction of fibers
diminishes or the cross section of fiber becomes circu-
lar: |�	|max, �‖〈v(0)〉‖max diminish as c → 0 or r →
1. Nevertheless, this trend breaks down for shear thin-
ning fluids and r �= 1: as shown in Fig. 4(b and c) (d–f)
(h and i), �‖〈v(0)〉‖max is maximal at mild fiber content
(Fig. 4(d–f)).

4. Macroscopic modelling

4.1. General form of the macroscopic law

From the numerical results presented in the previous sec-
tion, the form of the macroscopic viscous drag force f is now
studied. We have shown previously that the macroscopic re-
sponse exhibited orthotropy or higher order symmetries (tetra
or isotropy). Therefore, we will restrict the presentation to or-
thotropic flow models (or with higher number of symmetries).

For general anisotropy, the readers are referred to the guide-
lines given in Auriault et al. (2002).

If the microstructure displays orthotropy, i.e., with three or-
thogonal symmetry planes of normal ei (i = I, II, III), it can be
shown from the theory of anisotropic tensor functions (Smith,
1971; Boehler, 1978, 1979; Boelher, 1987; Liu, 1982) that the
microstructure tensors

Mi = ei ⊗ ei , i = I, II, III (21)

have to be taken into account in the formulation of f . More
precisely, f can be expressed as

f = −(�IMI + �IIMII + �IIIMIII) · 〈v(0)〉, (22)

where the scalar rheological functions �i depend on the geom-
etry of the porous medium, �0 and n, and are, in accordance
with property (9), homogeneous functions of degree (n− 1) of
the velocity invariants Ii defined as

Ii =
√

〈v(0)〉 · Mi · 〈v(0)〉, i = I, II. (23)

The following subsections detail possible expressions of the
functions �i .

4.2. The model of Woods et al. (2003)

Macroscopic tensorial flow laws through anisotropic fibrous
media are very scarce. To our knowledge, the only proposal
was given by Woods et al. (2003) for transverse flow of power-
law fluids through the fibrous microstructures sketched in
Fig. 1. This 2D-law has been expressed in the reference frame
(e1, e2) = (eI, eII) as

f = −nd�0
�

c

(
1

k∗
1

( |u|
a

)n−1

ue1 + 1

k∗
2

( |v|
a

)n−1

ve2

)
. (24)

Three comments can be done from the last relation:

• Firstly, it is not written in an intrinsic form: its definition in
another reference frame is not obvious. Within the framework
presented in Section 4.1, the macroscopic flow law (24) may
be written as

f = − nd�0
�

c

(
1

k∗
1

(
II

a

)n−1

MI

+ 1

k∗
2

(
III

a

)n−1

MII

)
· 〈v(0)〉. (25)

The last equation is compatible with (22) and corresponds to
the particular case where (with no summation on the indice i)

�i = nd

�

c

�0

an−1k∗
i

I n−1
i , i = I, II. (26)
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Fig. 4. Evolution of ‖〈v(0)〉(�)‖/‖〈v(0)〉(0)‖ as a function of �, for various power-law exponents n, for three volume fractions of fibers (c=0.7, 0.5 and 0.1) and
for three aspect ratios (r=1, 0.5 and 0.2). Marks are simulation results. Dashed and continuous lines represent the prediction given by (27) and (50), respectively.

• Secondly, the flow law (24) (or (25)) implies that the norm
‖〈v(0)〉‖ as well as the angle 	 are written as (0����/2)

‖〈v(0)〉‖ =
(

an−1

nd(�/c)�0

)1/n

((k∗
1 cos �)2/n

+ (k∗
2 sin �)2/n)1/2‖f‖1/n, (27)

	 = tan−1
(

k∗
2

k∗
1
(tan �)1/n

)
− �. (28)

Figs. 4 and 5 show that these relations well reproduce
numerical results at volume fractions of fibers close to

cmax. A similar trend is observed when the aspect ratio
deviates from 1. However, these figures also show that
the differences of (28) and (27) from the simulation in-
crease with decreasing the volume fraction of fiber or
when the aspect ratio tends to 1. Indeed, because the
functions �i in (26) only depend on Ii , the predicted
flow in the eI direction is not influenced by that in the
eII, i.e., there is no coupling effect. When r = 1, Idris
et al. (2004) have shown that for mild or low volume
fractions of fibers, such an assumption breaks down and
coupling effect between on-axis solutions should be taken
into account.
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Fig. 5. Evolution of the angle 	 as a function of �, for various power-law exponents n, for three volume fractions of fibers (c = 0.7, 0.5 and 0.1) and for three
aspect ratios (r = 1, 0.5 and 0.2). Marks are simulation results. Dashed and continuous lines represent the prediction given by (28) and (51), respectively.

• Thirdly, this law has been built for a particular type of fibrous
microstructure (Fig. 1), and its application to other fibrous
or porous media would require some adaptations.

4.3. A model based on iso-dissipation curves

We propose a new methodology to derive the macroscopic
flow law of any given porous media. The methodology is in-
troduced here in the case of the 2D-transverse flow through the
simple fibrous microstructures depicted in Fig. 1, but its exten-
sion to 3D flow and complex microstructures is straightforward.

4.3.1. Iso-dissipation curves
Hence, the properties of the macroscopic volumetric me-

chanical dissipation P defined as

P = −f(〈v(0)〉) · 〈v(0)〉 = −∇p(0) · 〈v(0)〉 (29)

is now further investigated. More precisely, mechanical iso-
dissipation curves D〈v(0)〉 plotted in the velocity space, i.e., the
loci of velocities 〈v(0)〉 such that the mechanical dissipation P
is constant and equal to a given value P0:

D〈v(0)〉 : {〈v(0)〉| − f · 〈v(0)〉 = P0}, (30)

are next analyzed. They are determined from numerical re-
sults presented in Section 3.4 (subscript “�3.4”). To obtain
such curves, the homogeneity of degree n of f with respect
of 〈v(0)〉 is used and the positive real number � is determined
such as

P0 = P(�〈v(0)〉�3.4)

= − �n+1〈v(0)〉�3.4 · f�3.4 = �n+1P�3.4 (31)
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so that

� =
(

P0

P�3.4

)1/(n+1)

(32)

and

〈v(0)〉 =
(

P0

P�3.4

)1/(n+1)

〈v(0)〉�3.4

=
(

P0

−〈v(0)〉�3.4 · f�3.4

)1/(n+1)

〈v(0)〉�3.4. (33)

In the particular case of the current 2D-orthotropic microstruc-
tures, D〈v(0)〉 can be plotted using the (II, III) representation.
This is done in Fig. 6, from which the following trends are

observed:

• when r = 1 and n = 1, iso-dissipation curves are circular
(cf. Fig. 6(a)): this is a direct consequence of the isotropy of
the flow law in this situation.

• when r �= 1, iso-dissipation curves are stretched vertically:
as the gap 2h2 is smaller than 2h1 (cf. Fig. 1) the flow in the
e2 direction is easier than in the e1 one.

• the curvature of the iso-dissipation curves depends on n,
so that when n increases, the shape of the iso-dissipation
seems to go from a rhomb shape for shear thinning
fluids to a rectangle shape for shear thickening fluids
(see Fig. 6(c)).

4.3.2. Normality rule—viscous dissipation potential
Thereby, the angle � between the normal n of the mechanical

iso-dissipation curve D〈v(0)〉 and the macroscopic volumetric
viscous drag force f is next analyzed (see Fig. 7(a)). Within
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the investigated fiber content and power-law exponent ranges,
it is found that � took very small values (< 0.004 rad) so that it
could be considered as zero: this is illustrated in Fig. 7(b and c)
for the iso-dissipation curves plotted in the cases where c=0.7,
r = 0.2 and c = 0.1, r = 1. Consequently, we can conclude that
the volumetric viscous drag force f obeys to the normality rule.
It can also be expressed as the gradient with respect to 〈v(0)〉
of a viscous dissipation potential �(〈v(0)〉):

f = −��(〈v(0)〉)
�〈v(0)〉 , (34)

with

P = −f(〈v(0)〉) · 〈v(0)〉 = ��(〈v(0)〉), (35)

� being a positive constant. Such a property is very interesting
since it is now possible to build a macroscopic flow in a simple
way from the knowledge of iso-dissipation curves.

4.3.3. Equivalent seepage velocity—equivalent viscous drag
force

To obtain a more interesting form of f , it is possible to ex-
press � as a function of a scalar equivalent seepage velocity
veq(〈v(0)〉), i.e., a norm in the velocity space, so that the macro-
scopic drag force is now expressed as

f = − ��

�veq

�veq

�〈v(0)〉 = feq
�veq

�〈v(0)〉 , (36)

where feq is the equivalent viscous drag force associated with
veq in the sense:

P = −f · 〈v(0)〉 = −feqveq. (37)

Accounting for the order of magnitude expression (5), we pro-
pose

feq = −�0

lc

(
vc

lc

)n

= −�0

lc

(
�veq

lc

)n

, (38)

where � is a constant equal to vc/veq. For 2D-orthotropic mi-
crostructures, veq only depends on II and III. Hence, using
classical derivation rules

�veq

�〈v(0)〉 = �veq

�II

�II

�〈v(0)〉 + �veq

�III

�III

�〈v(0)〉
= 1

II

�veq

�II
MI + 1

III

�veq

�III
MII, (39)

the macroscopic flow law can now be written as

f = − ��0

l2
c

(
�veq

lc

)n−1

×
(

veq

II

�veq

�II
MI + veq

III

�veq

�III
MII

)
· 〈v(0)〉. (40)

The difficulty is now to find suitable expressions for lc, � and
veq:

(a) lc, � and veq have been chosen such that when 〈v(0)〉=ueI,
the flow law (40) equals the 1D model (18), and when
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〈v(0)〉 = veII, (40) equals the 1D model (19). Therefore,
in the particular case of the studied microstructure, lc is
directly given by (16) and � is deduced from (16) and (17):

� = 1


1(1 − √
�)

, (41)

where the function 
1 has been determined numerically in
Section 3.3 (cf. Fig. 3).

(b) Then, by considering the shape of mechanical iso-
dissipation curves obtained with the studied orthotropic
(r �= 1) and tetratropic (r = 1) fibrous microstructures, veq
can take the following form:

vm
eq = Im

I +
(

III

A

)m

, (42)

where A > 0 characterizes the anisotropy of the flow be-
tween the two symmetry axes, and m ∈]1; ∞[ is used
to modify the curvature of the iso-dissipation curve (see
Fig. 8). The conditions stated in (a) as well as the expres-
sion (42) of veq imply:

A = 1

r

(

2(c, n, r)


1(c, n, r)

)(2n+1)/(n+1)

= 1

r

(

1(c, n, r−1)


1(c, n, r)

)(2n+1)/(n+1)

. (43)

Let us remark that A = 1 if r = 1.

Accounting for the last two points, the flow law is now
written

f = − �0(
√

�/ra)n+1vn−1
eq

(
1(1 − √
�))2n+1

×
((

II

veq

)m−2

MI + 1

Am

(
III

veq

)m−2

MII

)
· 〈v(0)〉, (44)

veq and A being defined in (42) and (43), respectively. Notice
that Eq. (44) is also compatible with (22) and that the corre-
sponding functions �i now depend on both II and III

�i = − �0(
√

�/ra)n+1

(
1(1 − √
�))2n+1

vn−m+1
eq Im−2

i , i = I, II. (45)

Coupling effects between flows in the e1 direction and the e2
direction are ensured through the definition of veq. Please re-
mark that such a coupling vanishes if m = (n + 1): in this sit-
uation, the flow laws (44) and (25) are equivalent.

Following the same procedure and using (37) and (7b), it can
be shown that the macroscopic flow law (44) can be put in the
following reverse form:

〈v(0)〉 = −
(

(
1(1 − √
�))2n+1

�0(
√

�/ra)n+1

)1/n

f (1/n)−1
eq

×
((

JI

feq

)M−2

MI + AM

(
JII

feq

)M−2

MII

)
· f , (46)

where f = ∇p(0) (according to Eq. (7b)), M = m/(m − 1),

Ji =√
f · Mi · f, i = I, II (47)

and where

f M
eq = JM

I + (AJ II)
M . (48)

From the upscaling process, it is shown that when n = 1, the
macroscopic flow law (44) and the macroscopic volumetric dis-
sipation (29) must be linear and quadratic function of 〈v(0)〉,
respectively (Auriault, 1991). In order to fulfill this condition,
the constitutive parameter m must equal 2 when n = 1. In this
situation, the macroscopic flow law reduces to the well-known
generalized Darcy’s law. For the microstructures under consid-
eration we get

〈v(0)〉 = − (
1(1 − √
�))3

�0(
√

�/ra)2
(MI + A2MII) · ∇p(0). (49)

Also note that in the particular cases where r =1 and n=1, veq

and feq simplify to the Euclidian norms ‖〈v(0)〉‖ and ‖∇p(0)‖,
respectively.

Let us now investigate the values of the parameter m when
n �= 1. These values were determined by fitting Eq. (42) with
the numerical iso-dissipation curves (see Fig. 6). The corre-
sponding values of m are presented in Fig. 9. In general, m is
not constant and depends on the fiber content c, the aspect ratio
r and on the power-law exponent n. Anyhow, when c tends to
cmax or r tends to ∞, then m tends to (n+ 1). Such a tendency
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proves that the model proposed by Woods et al. (2003), i.e.,
(25), and the new model (44) are equivalent at fiber contents
close to cmax or elongated cross sections.

To check the improvement brought by the new model,
the predicted values of ‖〈v(0)〉‖ and 	 have been plotted in
Figs. 4 and 5, respectively. Their respective expression are
(0����/2):

‖〈v(0)〉‖ =
(

(
1(1 − √
�))2n+1

�0(
√

�/ra)n+1

)1/n

× ((cos �)M + (A sin �)M)(1−M+1/n)/M

× ((cos �)2M−2 + A2M(sin �)2M−2)1/2, (50)

and

	 = tan−1(AM(tan �)M−1) − �. (51)

These figures show that the new formulation allows a better
modelling of the numerical results in the whole ranges of vol-
ume fractions of fibers, aspect ratios and power-law exponents.

5. Conclusion

The results deduced from the homogenization method for pe-
riodic structures with multiple scale expansions have been used
to investigate numerically the flow of power-law fluids through
anisotropic porous media. In this paper, numerical results ob-
tained on 2D periodic arrays of parallel fibers with elliptical
cross section were presented. These results clearly show the role
of the volume fraction of fibers, the aspect ratio of their cross
section and the fluid rheology on the resulting macroscopic
flow law. In the case of on-axis flows, a simple semi-analytical
expression of the 1D-flow law was proposed. This expression
highlights the role of the different microstructural parameters
and the fluid rheology. In order to quantify the anisotropy of
the flow induced by the microstructures, the off-axis flow was
then investigated. The predictions of the macroscopic model
proposed by Woods et al. (2003) were compared to our nu-
merical data. It was shown that this model allows a good de-
scription of the numerical results when the volume fraction of
fibers is large and the cross section of the fibers is elongated.
However, its was also shown that this model fails in reproduc-
ing our numerical data in other situations. Consequently, a new
macroscopic flow law was proposed in the framework of the
theory of anisotropic tensor functions and using mechanical
iso-dissipation curves. This model allows a better description
of the numerical results in the whole range of volume fractions
of fibers, cross section aspect ratios and power-law exponents
that have been investigated. Compared to the model of Woods
et al. (2003), it requires only one additional constitutive param-
eter, which can be easily determined from the iso-dissipation
curves. The methodology (theory of anisotropic tensor func-
tions, mechanical iso-dissipation curves) presented in this paper
in order to formulate the macroscopic flow law can be applied
to more complex media without difficulty. Lastly, let us remark
that the iso-dissipation curves can be deduced from numerical
simulations on REV elementary volume but also from filtration
experiments with different orientations of the pressure gradient
with respect to the microstructure.
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