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I. INTRODUCTION

In this paper we present a simple method for calculat
the energies of the bound states of a nonrelativistic particl
a potential well1 ~see also Refs. 2–5!. To demonstrate the
method, we first consider the one-dimensional rectang
potential well,V(x), ~Fig. 1!,

V~x!5H 0 for uxu.L/2

2V0 for uxu<L/2,
~1!

whereV0 is the potential depth, andL is its width.
In the usual approach, in order to find bound states,

need to find the solutions of the Schro¨dinger equation, which
vanish atuxu→`. For the potential~1! this wave function is

C~x!5H A exp~kU8 x! at x,2L/2

B exp~ ikx!1C exp~ ikx! at 2L/2<x<L/2

D exp~2kU8 x! at x.L/2,

~2!

wherek5A2mE/\,E is the particle energy with respect t
the bottom of the well, m is the particle mass,kU8
5AU2k2, and U52mV0 /\2. In the following we shall
omit the constant\2/2m. It means that all the energies a
measured in a system of units in which\2/2m51.

Matching this wave function and its derivatives at tw
points (x56L/2) gives a homogeneous system of fo
equations for coefficientsA, B, C, andD, and the condition
of compatibility for this system gives an equation for t
eigenenergyEn , or the wave numberkn defined askn

5A2mEn/\. Of course, in our simple case of the symmet
cal potential~1! the number of equations can be reduced
two,1 because one can consider separately symmetrical
antisymmetrical wave functions, for whichA56D and B
56C. However, for potential wells of general form that
not possible, and we need to solve the system of four or m
equations.

We want to show a different way to derive the equation
the eigenenergiesEn ~or for the wave numberskn!, which
may be generalized to potentials of arbitrary form. It is bas
on the requirement of self-consistency of reflections fr
both walls of the potential well, which gives a physical i
sight into the nature of bound states and leads to genera
tion of the Bohr quantization rule.
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The method is described in the following section. It
demonstrated there with the help of the potential well~1!,
which from a pedagogical point of view seems to be the m
appropriate.

In Sec. III we generalize our method for the nonsymme
cal potential well, and in Sec. IV we show how the we
known Bohr–Sommerfeld quantization rule can be modifi

II. SELF-CONSISTENT REFLECTIONS IN THE
POTENTIAL WELL „1…

Let us consider a particle in the well which starts to prop
gate from the left wall (x52L/2) toward the right one a
x5L/2. This propagation is described by the wave functi

exp~ ik@x1L/2# !. ~3!

The amplitude of this starting wave is taken to be unity b
cause its magnitude is irrelevant.

After reaching the right wall at (x5L/2), the particle ac-
quires the phase factor exp(ikL), is reflected from the right
wall with reflection amplituder(k), and starts propagating
toward the left wall, which is described by the wave functi

r~k!exp~ ikL !exp~2 ik@x2L/2# !. ~4!

After reaching the left wall, the particle acquires an ad
tional phase factor exp(ikL), and after being reflected from
the left wall with the reflection amplituder(k), which is
here identical to that of the right wall, the particle starts
move again from the left wall to the right, which is describ
by the following wave function:

r2~k!exp~2ikL !exp~ ik@x1L/2# !, ~5!

which is identical to~3! except for the amplitude.
However, and this is the main point, if the particle is in

eigenstate, the wave function should be stationary. Theref
~5! should be identical to~3!. This is possible only for those
k for which

r2~k!exp~2ikL !51. ~6!

The solution of this equation gives all the eigenvalueskn and
thereforeEn5kn

2.
The next step is to findr(k) and to substitute it into~6!.

Reflection of a particle with wave numberk from a potential
step of heightU.k2 is total and is representable in the for
of a phase factor~see Appendix A!:
1177g/ajp/ © 2001 American Association of Physics Teachers



Fig. 1. Square potential well of width
L and depthV0 .
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r~k![r~k,U !5
U

k1 ikU8
5exp~22if~k,U !!, ~7!

wherekU8 5AU2k2, and the phasef(k,U) is

f~k,U !5arctanS kU8

k D 5arccosS k

AU
D . ~8!

For clarity the step heightU of the potential is explicitly
pointed out everywhere.

Substitution of~7! into ~6! gives

exp~2ikL24if~k,U !!51→kL22 arccosS k

AU
D 5np,

~9!

wheren is an integer, which can be also21 and 0. The value
n521 corresponds tok50, which means a constant wav
function for a particle on the bottom of the well; howev
this constant should be 0, because the wave function sh
vanish atuxu5`. Thus the lowest acceptable eigenvalue
n50.

The highest level is near the edge of the well:k'AU. It
means that the highest level in the well corresponds to

nmax5 integer~AUL !,

where integer~x! means greatest integer, contained inx.

III. GENERALIZATION TO THE
NONSYMMETRICAL WELL

Equation ~6! can be easily generalized to more comp
cated potentials. For instance, if the two walls are someh
different, then Eq.~6! becomes

r l~k!r r~k!exp~2ikL !51, ~10!

wherer l ,r(k)5exp(22ifl,r(k)) are the reflection amplitude
and f l ,r(k) are their phases for reflection from the left a
right walls of the well, respectively. Thus relation~9! is gen-
eralized to

kL2f r~k!2f l~k!5np. ~11!

For instance, let us consider the well shown in Fig. 2. T
reflection amplitude at the left wall is now

r l~k!5r~k,W!5
k2 ikW8

k1 ikW8
5exp~22if~k,W!!, ~12!

wherekW8 5AW2k2, and
1178 Am. J. Phys., Vol. 69, No. 11, November 2001
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f~k,W!5arctanS kW8

k D 5arccosS k

AW
D . ~13!

Thus, Eq.~11! for eigenlevels is:

kL2arccosS k

AU
D 2arccosS k

AW
D 5np, ~14!

or

kL2arccosS k22kU8 kW8

AUW
D 5np. ~15!

A more complicated nonsymmetrical potential well wi
the same level to the right and left is shown in Fig. 3. T
reflection amplitude from the right wall is the samer r(k)
5r(k,U), as above, butr l(k) requires some calculation. I
can be easily performed by splitting the potential with
infinitesimal gap~see Refs. 6–12!, as shown in Appendix B:

r l~k!5r~k,W,d!1
t2~k,W,d!r~k,U !

12r~k,U !r~k,W,d!

5
r~k,W,d!1r~k,U !@t2~k,W,d!2r2~k,W,d!#

12r~k,U !r~k,W,d!
,

~16!

where we have introduced notations for reflectionr(k,W,d)
and transmissiont(k,W,d) amplitudes of the rectangular po
tential barrier of heightW and width d. These amplitudes
using the same technique~see Appendix C!, can be repre-
sented in the form

Fig. 2. The square potential well of widthL with two different levels:W at
the left andU at the right walls, respectively.
1178J.-F. Bloch and V. Ignatovich
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Fig. 3. The square potential well o
width L and depthU ~in units \2/2m
51! with a barrierW2U of width d
at the left wall. The potential on the
left is equivalent to the potential at the
right with the barrier separated from
the well by an infinitesimal gape.
. 3

sent

r~k,W,d!5r~k,W!

12exp~22kW8 d!

12r2~k,W!exp~22kW8 d!
, ~17!

t~k,W,d!5exp~2kW8 d!
12r2~k,W!

12r2~k,W!exp~22kW8 d!
,

~18!

wherer(k,W) is defined in~12! and ~13!.
It is seen that for d→0, we have r(k,W,d)}2 id

→0,t(k,W,d)→1, and from ~16! it follows that r l(k)
→r(k,U). For d→` we have r(k,W,d)→r(k,W),
t(k,W,d)} i exp(2kW8 d)→0, and from ~16! it follows that
r l(k)→r(k,W), because in that case the potential of Fig
becomes transformed to that of Fig. 2.
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Taking into account these considerations, we can repre
~17! and ~18! in the form

r~k,W,d!52 i ur~k,W,d!uexp~ if~k,W,d!!,
~19!t~k,W,d!5ut~k,W,d!uexp~ if~k,W,d!!,

whereur(k,W,d)u21ut(k,W,d)u251, and

f~k,W,d!5arctan$cot@2f~k,W!#tanh~kW8 d!%. ~20!

This phase has the following asymptotic behavior:

f~k,W,d!→H 0 for d→0

p/222f~k,W! for d→`.
~21!

Substitution of~19! into ~16! gives r l(k)5exp(22ifl(k)),
where
f l~k!5f~k,U !2f~k,W,d!1arctanS ur~k,W,d!ucos~2f~k,U !2f~k,W,d!!

11ur~k,W,d!usin~2f~k,U !2f~k,W,d!! D . ~22!
ell
Substitution of~22! into ~11! gives the following equation for
eigenvalueskn of k:

kL12f~k,U !2f~k,W,d!

1arctanS ur~k,W,d!ucos~2f~k,U !2f~k,W,d!!

11ur~k,W,d!usin~2f~k,U !2f~k,W,d!! D
5np. ~23!
IV. GENERALIZATION OF THE
BOHR–SOMMERFELD QUANTIZATION RULES

The Bohr–Sommerfeld quantization rule is:13

E
a

b

k~x!dx2p/25np. ~24!

Let us see how well this rule is satisfied in the potential w
d

h
s-
ll.
Fig. 4. The potential well with variable potential an
steps at two end pointsxl ,r of heightW at the left andU
at the right edge. For the particle with sufficiently hig
energyk2 with respect to the well bottom the quasicla
sical approximation is valid everywhere inside the we
1179J.-F. Bloch and V. Ignatovich
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Fig. 5. Reflection from the potential o
the left wall in Fig. 3. This potential
can be split by an infinitesimal gape.
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~1!. Because in this casek(x)5k does not depend onx, we
obtain

E
2L/2

L/2

k dx5kL,

and the precise quantization rule becomes~9!. This means
thatp/2 must be replaced by 2 arccos(k/AU). The last quan-
tity becomesp if U→`; thus the quantization rule for infi
nite U becomeskL2p5np with integer n>0. Thus the
precise quantization rule~9! deviates from~24!. This shows
that the quantization rule~24! should be modified to

E
a

b

k~x!dx2f l~k!2f r~k!5np, ~25!

wheref l ,r(k) are the reflection phases at the turning poi
xl ,r , wherek(xl ,r)50. It is complicated in general to defin
such a reflection. Here we consider a simple case of a po
tial, shown in Fig. 4. The reflection phases for such a pot
tial are

f l5arccosAk22V~xl !

W
, f r5arccosAk22V~xr !

U
,

~26!

and the quantization rule~25! is as follows:

E
a

b

k~x!dx2arccosAk22V~xl !

W
2arccosAk22V~xr !

U

5p. ~27!

It is possible to find the phases even in more general ca
and we shall consider this in other publications.
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APPENDIX A: REFLECTION FROM A STEP
POTENTIAL

We recall here how to find the amplituder(k,U) for re-
flection of a particle with wave numberk from the potential
step of heightU. Let suppose that the step is atx>0. The
wave function of the particle is

C~x!5H exp~ ikx!1r~k,U !exp~2 ikx!NN at x,0

t~k,U !exp~2kU8 x! at x.0,
~28!

wheret(k,U) is the transmission amplitude inside the p
tential.

Matching the wave function and its derivative at the po
x50 gives two equations:
1180 Am. J. Phys., Vol. 69, No. 11, November 2001
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11r~k,U !5t~k,U !, ik@12r~k,U !#52kU8 t~k,U !.
~29!

Solution of these equations gives

r~k,U !5
k2 ikU8

k1 ikU8
, t~k,U !5

2k

k1 ikU8
, ~30!

which gives the result~7!.

APPENDIX B: REFLECTION FROM THE LEFT
SIDE OF THE WELL IN FIG. 3

Let us split the potential as shown in Fig. 5. Denote
flection and transmission amplitudes of the first rectangu
barrier asr1 andt1 , and reflection amplitude of the secon
step asr2 . Then, taking into account multiple reflection
inside the gap of infinitesimal widthe, where the phase ac
quired between the walls can be neglected, we obtain for
reflectionr12 of the whole system the infinite sum

r125r11 (
n50

`

t1r2~r1r2!nt15r11
t1

2r2

12r1r2
, ~31!

from which formula~16! is directly obtained.

APPENDIX C: REFLECTION AND TRANSMISSION
OF A RECTANGULAR BARRIER

Let us look at the rectangular barrier of heightW and
width d in Fig. 5, and denote reflection and transmissi
amplitudes from vacuum into the barrier asr1 ,t1 , and re-
flection and transmission amplitudes from inside the bar
into vacuum asr2 ,t2 . It is easy to show in the same way a
in Appendix A, that

t15
2k

k1 ikW8
, t25

2ikW8

k1 ikW8
, r152r25

k2 ikW8

k1 ikW8
,

and thatt1t2512r1
2. In the same way as in Eq.~31!, we

can obtain formulas for reflection,r, and transmission,t, of
the whole barrier. Indeed, taking into account multiple
flections at the two edges atx50, andx5d, and also extinc-
tion e5exp(2kWd) for propagation between the edges, w
get r andt as sums of infinite geometrical progressions:

r5r11 (
n50

`

t2r2~r2e!2nt1

5r11
t1t2r2

12r2
2e2 5r1

12e2

12r1
2e2 ,

t5e(
n50

`

t2~r2e!2nt15e
t1t2

12r1
2e2 5e

12r1
2

12r1
2e2 ,

which leads directly to~17! and ~18!.
1180J.-F. Bloch and V. Ignatovich
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