A new approach to bound states in potential wells
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[. INTRODUCTION The method is described in the following section. It is
demonstrated there with the help of the potential vl
In this paper we present a simple method for calculatingvhich from a pedagogical point of view seems to be the most
the energies of the bound states of a nonrelativistic particle iBppropriate.
a potential well (see also Refs. 245To demonstrate the  In Sec. IIl we generalize our method for the nonsymmetri-
method, we first consider the one-dimensional rectangulagal potential well, and in Sec. IV we show how the well-
potential well,V(x), (Fig. 1), known Bohr—Sommerfeld quantization rule can be modified.

0 for |x|>L/2
()

-V, for |x|<L/2, II. SELF-CONSISTENT REFLECTIONS IN THE
POTENTIAL WELL (1)

V(Xx)=

whereV, is the potential depth, anld is its width. ) S )
In the usual approach, in order to find bound states, we Let us consider a patrticle in the well which starts to propa-

need to find the solutions of the Schinger equation, which ~ gate from the left wall x=—L/2) toward the right one at
vanish at/x|—. For the potentia(1) this wave function is X=L/2. This propagation is described by the wave function
exp(ik[x+L/2]). 3
Aexpkyx)  at x<—L/2 The amplitude of this starting wave is taken to be unity be-
¥ (x)=9 Bexplikx)+Cexpiikx) at —L/2sx<L/2 (2) cause its magnitude is irrelevant.
Dexp—k,x) at x>L/2 After reaching the right wall at{=L/2), the particle ac-
v ' quires the phase factor exg(), is reflected from the right
wall with reflection amplitudep(k), and starts propagating

wherek=y2mE/#,E is the particle energy with respect to toward the left wall, which is described by the wave function

the bottom of the well,m is the particle massk|

=JU—K% and U=2mV,/%2. In the following we shall p(K)expikL)exp(—ik[x—L/2]). )
omit the constan?/2m. It means that all the energies are  After reaching the left wall, the particle acquires an addi-
measured in a system of units in whigf/2m=1. tional phase factor exiil), and after being reflected from

Matching this wave function and its derivatives at two the left wall with the reflection amplitudge(k), which is
points (k= *L/2) gives a homogeneous system of fourhere identical to that of the right wall, the particle starts to
equations for coefficientd, B, C, andD, and the condition move again from the left wall to the right, which is described
of compatibility for this system gives an equation for the by the following wave function:

eigenenergyE,, or the wave numbek, defined ask, 2 : :

=y2mE,/f. Of course, in our simple case of the symmetri- _p (.k).exp(2.|kL)exp(|k[x+ L21). ) ®)

cal potential(1) the number of equations can be reduced towhich is identical to(3) except for the amplitude.

two,! because one can consider separately symmetrical and However, and this is the main point, if the particle is in an
antisymmetrical wave functions, for which=+D andB  €igenstate, the wave function should be stationary. Therefore,
— +C. However, for potential wells of general form that is (5) Should be identical t@3). This is possible only for those

not possible, and we need to solve the system of four or mor for Which

equations. p?(K)exp(2ikL)=1. (6)
We want to show a different way to derive the equation for

the eigenenergiek,, (or for the wave numberg,), which )

may be generalized to potentials of arbitrary form. It is basedhereforeE,=kg.

on the requirement of self-consistency of reflections from The next step is to fing(k) and to substitute it intg6).

both walls of the potential well, which gives a physical in- Reflection of a particle with wave numbkifrom a potential

sight into the nature of bound states and leads to generalizatep of heightU>k? is total and is representable in the form

tion of the Bohr quantization rule. of a phase factotsee Appendix A

The solution of this equation gives all the eigenvalkgand
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Fig. 1. Square potential well of width
L and depthv,.

—L/2 L/2
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—V,
B B k—iky, B )
wherek{,=U—k?, and the phase(k,U) is
#(k,U) t r(kb) { X ) (8
,U)=arctan — | =arcco$ —| .
k Ju

For clarity the step height! of the potential is explicitly
pointed out everywhere.
Substitution of(7) into (6) gives
k
exp2ikL—4i¢(k,U))=1—kL—2 arcco$ — | =nr,
o #(k,U)) % JU)

9

wheren is an integer, which can be alsol and 0. The value

d(k,W) t rsk‘r’v X ) (13
,W)=arctan — | =arcco$ —| .
k Jw
Thus, Eq.(11) for eigenlevels is:
" { ‘ ) { ‘ ) 14
—arcco$ — | —arcco$ — | =nm,
Ju Yw
k2—k(,k\’,v)
kL—arcco$ ———| =nmr. 15
. L P as

A more complicated nonsymmetrical potential well with
the same level to the right and left is shown in Fig. 3. The
reflection amplitude from the right wall is the samg(k)

n= _1 COI’responC!S t(k=0, which means a constant wave :p(k,U)’ as above’ bupl(k) requires some calculation. It
function for a particle on the bottom of the well; however can pe easily performed by splitting the potential with an

this constant should be 0, because the wave function shouldfinjtesimal gap(see Refs. 6—12as shown in Appendix B:
vanish at|x|=. Thus the lowest acceptable eigenvalue is
7(k,W,d)p(k,U)

n=0.
The highest level is near the edge of the wkh: \/U. It 1-p(k,U)p(k,W,d)
 p(W,d) + p(k,U) 72k, W,d) — p?(k,W,d)]

means that the highest level in the well corresponds to
1-p(k,U)p(k,W,d) '

Pl(k):P(kyWrd)+

Nmax= iNteger \/UL),

where integefx) means greatest integer, containedkin (16)

where we have introduced notations for reflectidik, W, d)

and transmission(k,W,d) amplitudes of the rectangular po-

tential barrier of heighv and widthd. These amplitudes,
_using the same techniqusee Appendix ¢ can be repre-
ﬁented in the form

[Il. GENERALIZATION TO THE
NONSYMMETRICAL WELL

Equation(6) can be easily generalized to more compli
cated potentials. For instance, if the two walls are someho
different, then Eq(6) becomes

pi(K)pr(k)exp2ikL)=1, (10

wherep, (k) =exp(—2i¢ (k) are the reflection amplitudes

and ¢, (k) are their phases for reflection from the left and

right walls of the well, respectively. Thus relati¢®) is gen-

eralized to ‘

KL= (k) — ¢y (k)=n. (11) f

For instance, let us consider the well shown in Fig. 2. The
reflection amplitude at the left wall is now l |

ikyy

k+ikyy
whereky,= VW—k?, and

L

pi(k)=p(k,W)= =exp—2igk,wW)), (12

Fig. 2. The square potential well of widthwith two different levels\W at
the left andU at the right walls, respectively.
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Vi(r) Vi)

Fig. 3. The square potential well of
width L and depthU (in units #2/2m

—_— d -—
I =1) with a barrierw—U of width d
L2 L/2 at the left wall. The potential on the
T = — . w0 — left is equivalent to the potential at the
e ! . right with the barrier separated from
v ] the well by an infinitesimal ga.
'
L _—

— € e .

1—exp(— 2k{,d) Taking into account these considerations, we can represent
1 1 i
2k W) expl — 2kiyd) (17) (17) and(18) in th.e form _
p(k,W,d)=—i|p(k,W,d)|exp(i p(k,W,d)),

1—p?(k,W) _ - (19
1= 2k Wexp—2kid) (k,W,d)=]|7(k,W,d)|exp(i p(k,W,d)),

(18)  where[p(k,W,d)[?+]|7(k,W,d)[*=1, and

wherep(k,W) is defined in(12) and (13). #(k,W,d) =arctaffcof 2 $(k, W) Jtanh(ky,d)}. (20
It is seen that ford—0, we have p(k,W,d)x—id  This phase has the following asymptotic behavior:

—0,7(k,W,d)—1, and from (16) it follows that p,(k) 0 for d—0

—p(k,U). For d—ow we have p(k,W,d)— p(k,W), (b(k,W,d)H[

7(k,W,d) i exp(—kj,d)—0, and from(16) it follows that ml2=2¢(k,W)  for d—c.

p1(k)—p(k,W), because in that case the potential of Fig. 3Substitution of(19) into (16) gives p,(k)=exp(—2i#(K)),

becomes transformed to that of Fig. 2. where

p(k,W,d)=p(k,W) 7

7(k,W,d) =exp( —ky,d)

(21)

|p(k,W,d)|cog 2¢(k,U) — ¢p(k,W,d))
¢'(k)‘¢(k’u)_‘“"’W'd)*amtaré L+ o (W, d)[SiN 26 (k,U) — b(k W.d)) | 22
|
Substitution of(22) into (11) gives the following equation for V. GENERALIZATION OF THE
eigenvalue, of k: BOHR-SOMMERFELD QUANTIZATION RULES
KL+2¢(k,U)— ¢(k,W,d) The Bohr—Sommerfeld quantization rule'fs:
|p(k,W,d)[cog2¢(k,U)— ¢p(k,W,d)) b
+arc“"’6 LT+ [p(KW,Q)[SN26(K.U) — ¢(K.W,0)) J konaxmio=nn 29
=nar. (23 Let us see how well this rule is satisfied in the potential well
Viz)
@ z Fig. 4. The potential well with variable potential and

steps at two end pointg , of heightW at the left andJ

at the right edge. For the particle with sufficiently high
2 energyk? with respect to the well bottom the quasiclas-
sical approximation is valid everywhere inside the well.
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| | Fig. 5. Reflection from the potential of
i ‘ i the left wall in Fig. 3. This potential
| \ } can be split by an infinitesimal gap

| |

<
il

0 d z 0 d x
(1). Because in this cadgx) =k does not depend oxy we 1+p(k,U)=7(k,U), ik[1-p(k,U)]=—k{7(kU).
obtain (29
L/2 Solution of these equations gives
J k dx=KL, L
-L2 kU)—k_IkU KU)= 30
and the precise quantization rule beconi@s This means plkU)= k+ik(’ m(eU)= kK+ik(’

that /2 must be replaced by 2 arccks(U). The last quan- which gives the result7).

tity becomesrr if U—o0; thus the quantization rule for infi-

nite U becomeskL— 7w=ns with integern=0. Thus the APPENDIX B: REFLECTION FROM THE LEFT
precise quantization rul) deviates from(24). This shows  g|pE OF THE WELL IN FIG. 3

that the quantization rul€4) should be modified to
Let us split the potential as shown in Fig. 5. Denote re-

b X o ; ,
f k(x)dx—= ¢ (k)= (k) =n, (25  flection and transmission amplitudes of the first rectangular
a barrier asp; and r;, and reflection amplitude of the second

where ¢, (k) are the reflection phases at the turning points.Ste.p aspa. Then,.ta_ki.ng _into account multiple reflections
X+, wherek(x ;)=0. It is complicated in general to define msqde the gap of infinitesimal widtl, where the phas_e ac-
such a reflection. Here we consider a simple case of a pote uired between the walls can be neglected, we obtain for the

tial, shown in Fig. 4. The reflection phases for such a poten[mclecuonp12 of the whole system the infinite sum

tial are ) o
= + n — + e
k2= V(X)) kZ2—V(X,) pP12=p1 nZ,O T1p2(p1p2) " T1=p1 T 31)
¢y=arccos\| —————, ¢ =arccos\/ ————, . o .
" v (26) from which formula(16) is directly obtained.
and the quantization rule@5) is as follows: APPENDIX C: REFLECTION AND TRANSMISSION

width d in Fig. 5, and denote reflection and transmission
7) amplitudes from vacuum into the barrier ag,7;, and re-

It is possible to find the phases even in more general caseg?cuon and transmlssm_n amplitudes frqm inside the barrier
into vacuum ag,,7,. Itis easy to show in the same way as

and we shall consider this in other publications. X !
in Appendix A, that

ACKNOWLEDGMENT 2k 2ikyy k—ikiy
2T F ik PP K,

b kz—V(X|) k2—V(Xr) OF A RECTANGULAR BARRIER
fa k(x)dx—arccosy/ ——y———arccos\| —5—— Let us look at the rectangular barrier of height and
(2

=1Tr.

TI=T 7
VKI wants to express his gratitude to Grenoble Ecole de ' K+iky

Papetrie administration for their hospitality. and that1-17-2=l—p§. In the same way as in Eq31), we

. can obtain formulas for reflectiop, and transmissions, of
APPENDIX A: REFLECTION FROM A STEP the whole barrier. Indeed, taking into account multiple re-

POTENTIAL flections at the two edges at 0, andx=d, and also extinc-

We recall here how to find the amplitugék,U) for re-  tion e=exp(—kyd) for propagation between the edges, we
flection of a particle with wave numbérfrom the potential ~ getp and 7 as sums of infinite geometrical progressions:

step of heightU. Let suppose that the step is>»x@0. The o
wave function of the particle is p=pit 2 Topa(pr€)2Ty
=0
explikx) + p(k,U)exp(—ikx)NN  at x<0 " ;
T (Xx)= -
(x) m(k,U)exp(—k,x) at x>0, =p,+ 7'17'22F’22:pl ! SZ,
(28 1-p3e 1-pie
where 7(k,U) is the transmission amplitude inside the po- * Ty 1_p§
tential. T=€ Tz(Pze)znleel_ zezzel_ 252"
Matching the wave function and its derivative at the point n=0 P1 P1
x=0 gives two equations: which leads directly td17) and (18).
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