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Abstract--The modelling of heat and mass transfer in wet porous media in the presence of evaporation- 
condensation is revisited by using the homogenization method of asymptotic expansions for periodic 
structures. In order to produce the 'upscaled' equations for the continuum equivalent to the porous 
medium, we start from the pore level. At this scale the physics is described by convection and Fick's 
molecular diffusion coupled with heat transfer. The phase change process is incorporated into the analysis. 
The main advantage of the method is to use a systematic, rigorous and unified treatment to provide a 
general comprehension of all the interactions involved by the different heat and mass transfers. Four 
characteristic selected models are carried out. Their domains of validity are determined in function of the 
relative weight of the different phenomena in presence. Comparison with other models in the literature is 
presented. It appears that some of them exhibit a similar structure. In particular, the continuous passage 
between the different macroscopic models is investigated. Finally, the condition for a non-homogenizable 
situation, i.e., when it is impossible to find a macroscopic equivalent description is also addressed. © 1998 

Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

Modelling simultaneous heat and mass transfers in 
porous media is of  growing interest in a wide range of 
engineering domains, for meteorologists, soil scien- 
tists, agronomists or ecologists. Such phenomena are 
frequently encountered in industrial operations, 
including tertiary oil recovery practice, geothermal 
development,  civil engineering, energy storage and 
energy conversion. For  example, knowledge of  the 
simultaneous transfer of  heat and moisture in the 
uppermost  soil layers is of  great practical importance. 
The subject also concerns engineers interested in ther- 
mal transfer in porous or fissured media in connection 
with such problems as oil and geothermal extraction, 
exploration of  the heat of  hot  and dry rocks (HDR)  
or nuclear waste disposal in geological formations, 
etc. 

Heat  and moisture transfers in wet porous media 
are coupled in a complicated way. On the one hand, 
water moves under the action of  gravity and pressure 
gradient whilst the vapor phase moves by diffusion 
caused by a gradient of  vapor  density. On the other 
hand, heat is transported by conduction, radiation 
and convection. 
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It is commonly known from the previous works by 
Krischer and Kroll  [25], Philip and de Vries [27], de 
Vries [16, 18], that water movement  through unsatu- 
rated porous media is often caused by a temperature 
gradient, Water  evaporates from hot regions and 
moves across the gas-filled pores by diffusion and 
condenses on the cold region thus releasing its latent 
heat of  vaporization. Consequently, the contribution 
of  the vapor  diffusion in the air-filled pores and its 
induced ' latent heat transport '  has to be incorporated 
into the modelling. 

A phenomenological  theory of  combined heat and 
moisture transfer in porous media was previously 
established by de Vries [16, 18] and Philip and de Vries 
[27]. Commonly  known as the de Vries 'mechanistic '  
model, its practical usefulness is widely recognized in 
describing the simultaneous heat and moisture trans- 
fer within a wide range of  porous media. Applying 
balance equations yields to the coupled system 

C o T  = V ' ( ( 2 + L v D T v ) V T ) + V ' ( L v D o v V O , )  
Ot 

( la)  

Ot 
-- V "((Dvv + DTL)V T) + V "((D0v + Do,)VO,) 

(Ib) 
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NOMENCLATURE 

A v, B s, B', B g, P~, p v  pg, Np, NL~, N g~, N g~, 
N j', M dimensionless numbers 
(Co)g, (Cp)~, (Cp), gas, liquid and solid heat 

capacity, respectively [J kg J K -~] 
D binary air-vapor diffusion coefficient 

[m ~ s - ' ]  
D* macroscopic (or effective) diffusion 

tensor [m 2 s-t] 
ERV elementary representative volume 
K, Kg permeability tensors of the water and 

the gas, respectively [m s-1] 
1 characteristic length of the ERV (or 

the periodic cell) [m] 
L characteristic macroscopic length [m] 
L~ latent heat of vaporization [J kg -J] 
Mg molar mass of the gas phase [kg rnol- l] 
ng, n~, n~ gas, liquid and solid porosity, 

respectively [dimensionless] 
Ny, N~, N~ unit outward vector to fig, f~ and 

f~, respectively 
Pg, P~ gas and water pressure, respectively 

[Pal 
qvG, vapor source per unit volume at the 

gas-liquid interface [kg m -3 s -~] 
R universal gas constant [J mol-i K '] 
t time [s] 
Tg, T~, T, gas, liquid and solid temperature, 

respectively [K] 
vg°¢~ macroscopic (or effective) velocity of 

the gaseous phase [m s-~] 
v °err macroscopic (or effective) velocity of 

the liquid phase [ms -~] 
G, vg, v, v~ air, gas, liquid and vapor 

velocity, respectively [m s ~] 

Up 

W 

X 

X 

Y 

'evaporation' velocity at the gas-liquid 
interface [m s-~] 
gas-liquid interface velocity 
[m s -l] 
macroscopic (or slow) space variable 
(dimensionless) 
physical space variable [m] 
microscopic (or fast) space variable 
(dimensionless). 

Greek symbols 
Fgl, Fgs, Fls gas-liquid, gas-solid, liquid- 

solid boundary, respectively 
e homogenizaton parameter 

[dimensionless] 
2 8, "~1, As gas, liquid and solid thermal 

conductivity, respectively 
[J m -1 K - '  S-'] 

21"j, 2* macroscopic (or effective) 
conductivity tensor of the liquid and solid 
phase, respectively 
[J m - l  K - I  S- l ]  

~, Z pore vector fields 
P,, Pa, Pv, Pt solid, air, vapor and liquid mass 

density, respectively [kg m -3] 
~oa, cov air and vapor mass fraction, 

respectively (dimensionless) 
f2 period cell 
ILl total volume of the periodic cell [In 3] 
f~, ~s, f2g parts of the period occupied by 

the liquid, solid and gas, respectively 
[mq. 

where 

• V, V" stand for the gradient and the divergence 
operator, respectively 

• DTV, DT~ are the thermally induced diffusivities of 
vapor and liquid, respectively [m 2 s-~ K -  ~] 

• Dov, Do~ are the isothermal diffusivities of vapor 
and liquid, respectively [m 2 s-J] 

• 0, is the volumetric water content [dimensionless] 
• Tis the temperature [K] 
• 2 is the 'hypothetical' thermal conductivity [J m 

K -~ s-q 
• C is the volumetric heat capacity [J m -3 K-~] 
• L~ is the latent heat of vaporization [J kg-q  
• t is the time [s]. 

Furthermore, generalized diffusivities Do and Dr can 
be defined as follows 

Do = Dov + Dol (2a) 

D T = DTV -l- DTI. (2b) 

The main advantages of the de Vries approach can be 
attributed to the fact that theoretical expressions for 
the generalized diffusivities Do and DT for moisture 
transport due to a moisture gradient and to a tem- 
perature gradient, respectively, are available from 
only two independent variables: the temperature T 
and the water volumic moisture content G. In [30], 
Whitaker presents the first important temptative to 
introduce a rigorous derivation of the model by 
volume averaging the pore scale equations. 

Various laboratory and field tests were conducted 
to check the applicability of the de Vries and the Philip 
and de Vries model (Crausse [10], Crausse et al. [11], 
Daran [12], [13], de Vries [17], Hadas [19], van der 
Kooi [24], Jury [23] cited in de Vries [18], Horton 
and Wierenga [21], Moyne et al. [26], Shepherd and 
Wiltshire [29]). The de Vries model predicts quite 
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accurately the heat transfer under stationary 
conditions. However, fluctuating thermal conditions 
yield underestimation. Thus, some adjustment factors 
proved to be necessary to obtain agreement between 
theory and experiment (e.g., an enhancement factor-- 
Hadas [19], Shepherd and Wiltshire [291). 

van der Kooi [24] studied heat and moisture in 
cellular concrete roofs. He found that the behaviour 
of cellular concrete slabs could be predicted quite 
accurately by the Philip and de Vries theory. However, 
some correction factors (based on successive approxi- 
mations) were required for the macroscopic diffusi- 
vities Do and DT to agree with the numerical simu- 
lations. 

In his doctoral dissertation, Jury ([23] cited in de 
Vries [18]) analyses how the de Vries and Philip model 
is related to the flux equations given by the thermo- 
dynamics of irreversible processes (TIP). It comes out 
from his experimental data (see the comments in 
Hamburger [20]) that the Philip's and de Vries's model 
underestimates the water flux about five orders of 
magnitude. 

In order to avoid this underestimation, Moyne et  
al. [26] apply the volume averaging method to the 
grain scale description and obtained the following 
upscaled continuum equivalent modelling 

c~(T) 0 (  O@j~)_ A h v ( r h ) ( 3 a )  

pg ~TT.. | p g D J i / ~ l + ~ , m 2  (3b) 
Ot ~JAi \ UAj f - -  

where 

• ( 7 " )  is the volume average of the temperature 
defined on the elementary representative volume 
(REV) [K] 

• (coy) g is the intrinsic phase average of the vapor 
mass fraction o~v over the gaseous phase volume 
[dimensionless] 

• (&)  is the mass of evaporated water per unit vo l  
ume and unit time [kg m -3 s -j] 

• 2 u is the 'true' effective thermal conductivity [J m 
k-1 s-l] 

• Ahv designs the latent heat of water vaporization [J 
kg-  l] 

• ( p e p )  is the volume average of the volumic heat 
capacity [J m -3 K-J]. 

As first suggested by Philip and de Vries [16, 18, 27] 
a resistance factorfj  is incorporated into the analysis 
to model the influence of the solid and the liquid 
phases. Hadas [19] applied the de Vries model to 
evaluate the amount of energy moved by vapor trans- 
fer at the soil surface. It was found that the transfer 
of heat by vapor under steady state conditions could 
be accurately predicted by the theory in case of per- 
manent transfers. However, under fluctuating state 
conditions some corrections by 'enhancement factors' 

proved to be necessary to obtain closer agreement 
between theoretical and measured values. 

Using the cylindrical probe method described by de 
Vries [14, 15], Horton and Wierenga [21] consider a 
compacted sand at a given volumetric water content 
in order to measure its thermal conductivity. Accord- 
ing to the de Vries method [17], the accordance 
between the experimental and calculated data was 
relatively good. 

By means of the Philip and de Vries approach [16, 
27], Shepherd and Wiltshire [29] investigate the case 
of an asymptotically steady state in soils for which an 
analytical approach is available. The method consists 
in approximating the Philip and de Vries equations 
[16, 27] by an associated system of linear differential 
equations that can be solved explicitly. The solution 
is then applied to conditions prevailing in arid soil. 
Enhancement factors are here also introduced for a 
better checking of the theory. The reader is referred 
to [29] for more information about these works. 

Neither of the presented theoretical approaches 
take into account the all complexity of the interactions 
involved by the coupled heat and moisture transfers. 
The aim of this paper is to present new mathematical 
models for heat and mass transfer in porous media. 
For this purpose we use the method of multiple scale 
expansions to upscale the description at the pore scale 
to the macroscopic scale. For this purpose we assume 
the existence of an elementary representative volume 
(ERV) that is small in regard of the macroscopic 
characteristic length of the heat and mass transfer. For 
simplicity, we assume a similar macroscopic length for 
the heat and the mass transfer, respectively. The 
reader is referred to Bachmat and Bear [6] and Anguy 
[1] for the definition of the ERV and the determination 
of its characteristic size. 

This paper is organized as follows. Section 2 is 
devoted to a general presentation of the physics at the 
pore scale and to a brief survey of the homogenization 
method (Bensoussan et  al. [7] ; Sanchez-Palencia [28], 
Auriault [4]). The homogenization technique is then 
applied in Section 3 to the determination of the macro- 
scopic coupled heat and mass transfer equations. 
Under certain conditions in relation to the order mag- 
nitude of the different dominating phenomena, it is 
shown that the mass and the heat transfer equations 
can be solved separately. Considering the mass trans- 
fer problem, four different cases are presented that 
yield four different macroscopic models. The domains 
of validity of the different models are clearly shown 
and the continuous passage from a model to the others 
is investigated. Finally, we present the conditions for 
which homogenization is not possible, i.e., when it is 
impossible to find a macroscopic equivalent 
continuum. A more detailed analysis and other 
macroscopic models can be found in Bouddour [9]. 

2. THE DESCRIPTION AT THE PORE SCALE 

Numerous heterogeneous porous media such as 
concrete, ceramic, rocks, etc., are constituted by a 
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(a) (b) Y = x F~-I 

Fig. 1. Macroscopic (a) and microscopic (b) views of a spatially periodic porous unsaturated medium. 
Two length scales are displayed. 

single porosity system in which the dimension of the 
pore can vary widely. As recalled in the previous dis- 
cussion, the necessary and essential condition for the 
homogenization method to be applied to such media is 
the existence of an elementary representative volume 
(ERV) of the medium, which is small in comparison 
to the macroscopic volume. In periodic media, the 
period stands for the ERV. Let l be its characteristic 
length. Let L be the characteristic dimension of the 
macroscopic sample (or a characteristic length of the 
studied phenomenon in the sample). The separation 
of scales condition is written 

l 

where e is the parameter of scale separation. The scale 
separation condition (4) enables us to use the double- 
scale asymptotic expansion technique. Under this con- 
dition, the macroscopic models to be obtained are 
intrinsic to the porous medium and to the pheno- 
menon. They are independent of the macroscopic 
boundary conditions, In the course of the analysis, 
two non-dimensional space variables will be used 
x = (X/L) and y = (X//) where X is the physical space 
variable. Each unknown of a given boundary value 
problem appears as a function of these two dimen- 
sionless space variables. The variable x is the macro- 
scopic (or slow) space variable and y is the micro- 
scopic (or fast) space variable. 

We consider a periodic porous medium (see Fig. 1) 
with the space period ~. fl~, ~ and f~g are the domains 
occupied by the solid phase (s), the liquid (l) and the 
gas phase (g) within the period, respectively. Fg~, Fg~ 
and F~ are the gas-liquid, the gas solid and the liquid- 
solid interfaces, respectively. The solid part ~ is 
assumed to be rigid. The gas phase is a mixture of two 
components : the air (a) and the vapor (v). 

One of the most important steps in all hom- 
ogenization processes is to estimate the homogeniza- 
tion parameter e. However, this problem is out of the 
scope of the present paper. It must be stressed, that 
the adequate macroscopic model strongly depends on 

the scale separation. For the simplicity of the presenta- 
tion the following separation of scale is adopted: 

= ( l / L )  ~ 10 -2 (see Bloch [8]). Quite different values 
of e are available, depending on the macroscopic 
boundary value problem. For example, when studying 
nuclear waste disposals in geological formation, 
Hosanski e t  a l .  [22], consider the mass and heat trans- 
fer dissipated by waste radioactive within fracture 
granitic rocks, The authors model the medium as a 
rectangular and periodic, single porosity system, the 
characteristic length of which yields the following geo- 
metrical separation of scale : ~ ~ 10 -7. 

In the following analysis, the simultaneous pro- 
cesses of heat and mass transfer are examined with 
respect to different dominating phenomena. We 
assume no hysteresis and we neglect heat radiation 
transfer, gravity and physicochemical interactions 
between the solid and the fluids. 

We start from the pore level where the equation 
which governs the vapor mass fraction ~ov is written 
in the form : 

where 

• pg is the mass density of the gas 
• vgi is the velocity of the gas 
• D is the binary air-vapor diffusion coefficient 

assumed as isotropic. 

Moreover, the velocity of the air-vapor mixture is 
written : 

vsi = oo,,Vvi + og~v~, (6) 

where 

• vv~ and v~ are the velocities of the vapor and the air 
in the gaseous phase, respectively 

• the air mass fraction is given by 

~ = I - ~ , .  (7) 
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On the other hand, the heat transfer inside each phase, 
gas (g), liquid (1) and solid (s), is governed by con- 
duction and convection. Hence, in the liquid phase 
and the gaseous phase the heat transfer is described 
by the following microscale equation : 

8T B 8Ta 8 f ,  8T A 
(pCp)fl W +(PCP)fll)fl' ~ OXi tA f l -~ i )  "~- 0 

(8) 

where 

•/3 = {1, g} stands for the liquid and the gas phase 
• Tp is the temperature of the phase/3 
• % is the velocity of the phase/3 
• (pcp)p is the volumic heat capacity of the phase/3 
• 2a is the thermal conductivity of the phase /3 

assumed as isotropic. 

In the solid phase the heat transfer is governed by 
conduction only 

(P p)s ~ aX, 2, 8XJ = 0. (9) 

We will show that the temperature is a constant on 
the period for the investigated situations. Therefore, 
the thermodynamic equilibrium prevails on both the 
gas-solid Fg~ and gas-liquid l"g~ interfaces. Then, the 
gas density t0g, the gas pressure Pg and the gas tem- 
perature Tg are related by the gas state equation : 

P~ - RTg in f~g (10) 

where 

• Mg is the molar mass of the gas phase 
• If~gl is the volume of the gaseous phase 
• R is the universal gas constant. 

The preceding set of equations must be completed 
by proper boundary conditions on Fgj, Fg, and F> Let 
us first introduce the conditions on the gas-liquid 
interface Fg~. 

We assume the insolubility of air in water, that 
gives : 

v~iNp = 0 on Fg I (11) 

where N~ represents the outward unit normal to f~g. 
Let Vp~ = O.~vV~ be the 'evaporation' velocity at the 

gas-liquid interface. Then, introducing relation (11), 
the continuity of the flux vapor can be written as 
follows : 

0fOr Ng PaVpiN g = - - p g D ~  i on Fgl (12) 

where p~ is the mass density of the air phase. 
The mass conservation on Fg I is written 

pi(vil--wi)Ngi = pg(Vpi-wi)N ~ (13) 

where 

• wi is the gas-liquid interface velocity 
• p~ and v~i are the mass density and the velocity of 

the liquid phase (water), respectively. 

On Fg~, we assume the continuity of the temperature 
(14) and the heat flux verifies (15) : 

T~ = T, (14) 

, OTg g aT1 &Or 
- - A g ~ i i N  i = - - Z , ~ N g + p g D L , ~ N  g (15) 

where Lv is the latent heat of vaporization which 
depends only on the temperature of water. 

On the gas-solid interface Fgs, the boundary con- 
ditions are : 

D &or g pg ~ N i  = 0 (16) 

Tg = T, (17) 

OTg 63T~ Ng 
J - g ~  ug = Jl's ~ i  i. (18) 

Finally on the liquid-solid interface Ft~ we have : 

T, = Ts (19) 

Z OT~ l (gT, I 
I ~ N ,  = Z~ ~ x I N ,  (20) 

where NI represents the outward unit normal for 
phase (1). 

The above system of equations (5), (8), (9), (12), 
(13), (15), (18), (20) introduces thirteen dimensionless 
numbers. 

In the solid volume f~ : 

(pC~)s ~ t  ~ 
B S -  c~ (2 (?T~ (inverse of a Fourier number). 

In the liquid volume ~ ,  

aT, 

B I _ 
~ / t?T,\ 

(pcp),v,i ~X i 

(, I 
" ox , /  l 

In the gas volume f~g, 

(21) 

(inverse of a Fourier number) 

(22) 

(P6clet number). (23) 
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~(D v Pg~- 
A v 

(inverse o f a  massic Fourier  number)  (24) 

flgUgi ~ i i  ~(l)v 
P~ = O / ~o9~1 (P6clet number)  (25) 

pgCpg ~ / -  

B g - ~(~ 2g~XjIOTg)I ( i n v e r s e o f a F o u r i e r n u m b e r )  

0~ 

0x41 

(P6clet number).  

On the gas-liquid interface F~, 

JpavpiNgi ] 
X ~ -  ~o~ I 

pgD-~i  N~ 

~0) v 
pgDLvi ~ NP 

NL,. -- 

(vapor flux/diffusion flux) 

varying. More precisely, wl is supposed to be very 
small relatively to the vapor velocity Vvi. We take : 

I)viNg = 0 ( /3 -3 ) .  (34) 
w~Nf 

Furthermore, the liquid velocity vii is assumed to be 
smaller by an e-order of magnitude than the interfacial 
velocity wi 

vliNgi = O(e). (35) 
wiN~ 

Finally, we have 

P~ = O(e3). (36) 

Note that B ~, if ,  PJ~, A ~, P~, B g, Pg are defined in 
(26) the bulk of each phase whereas Np, NL~, N ~, N g~, 

N ~ and M are surface dimensionless numbers. In the 
process of homogenization all the quantities will be 
normalized with respect to the characteristic length l, 

(27) i.e., they will be changed into dimensionless variables 
using I as a reference length. Hence, the corresponding 
dimensionless space variable is y (the microscopic 
variable) and the dimensionless numbers will be 
denoted with the subscript l. It must be stressed that all 
the quantities in front of the dimensionless numbers in 
the dimensionless equations are O(1). That  makes the 
method of homogenization applicable. For  simplicity, 
notations for dimensionless and physical quantities 

(28) are similar. 

2 (~TI g 

(phase change flux/thermal flux). (29) 

From characteristic values for air and water and the 
adopted value of e, we get 

2g 
N g~ = ~ = O(e). (30) 

In case of soil samples, we have on the gas-solid 
interface Fg s : 

~-g 
N g~ = ~ = O(e) (31) 

and on the liquid-solid interface Fj~ : 

NL , 2~ = 7- = O(1). (32) 
Zl 

Finally, equation (13) introduces the following ratio 

M = Ipg(vp,- w~)Ngl 
(33) 

I Pl (v~ - w~)N~l 

For  the existence of a macroscopic model (Section 3), 
it is necessary to assume that the interface l~gl is slowly 

3. THE MACROSCOPIC MODELS OF HEAT AND 
MASS TRANSFER IN POROUS MEDIA 

The purpose of the analysis is to derive the macro- 
scopic equivalent governing equations and the effec- 
tive coefficients that describe the heat and mass trans- 
fer. Taking advantage of the small parameter e, the 
vapor mass fraction ~Ov, the mass density pg, the tem- 
perature T~ of the phase a = {s, 1, g}, the 'evaporation'  
velocity Vpi, and the velocity v~i of the phase fl = {1, g} 
are expanded in ascending powers of E : 

Ogv = ~Ov ° (x, y, t) + e i col (x, y, t) + e 2 co~ (x, y, t) +" 

(37) 

o i i y , t ) + e - p g ( x , y , t ) + " "  pg = pg (x, y, t) + e pg (x, , 2 

(38) 

T~ = T°(x, y, t ) + e '  T~ (x, y, t) +e2 T~(x,y, t )+" • • 

(39) 

o y , t )+elvJ i (x ,y , t )+e2v~i (x ,y , t )+. . .  /)/~i = t)/ji(X, 

(4o) 

vpi = v°i(x, y, t) + e' 1)li(g, y, t) + e2v~i(x, y, t) + ' "  

(41) 
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In the above expansions the co~, p~., T~, v'a, and V~p~ are 
y-periodic and 

x = ~y. (42) 

For  slow flow, the velocities Vl~ and Vg~ are given by 
the Stokes equation. The upscaling process is pre- 
sented elsewhere [2, 3]. We limit ourselves to the pre- 
sentation of the results. For  actual non-saturated 
porous media, the mechanical interaction between the 
two fluids seems to be negligible (Zarcone [31]). The 
velocity fields are given by 

, . t3P~ 
v~, = -X,!Ay, t)-~x.  P~ = P~(x,t) .  (43) 

The Darcy's fluxes are obtained by volume averaging 

t)~ eff = 1)~i df~ = - K~o~-~ " fl = 1, g (44) 

where K~ and K~ are the permeability tensors of the 
water and the gas, respectively. 

We now estimate the dimensionless numbers. Recall 
that some of them were determined in the preceding 
section. Some other ones are chosen in a way to inves- 
tigate the richest homogenizable situation : 
Bt~ = BI = B~ = O(e z) and P~t = P~' = O(e). Conse- 
quently, we are left with solely four variable dimen- 
sionless parameters which in fact govern the heat and 
mass transfer process with evaporation/condensation. 
Four  cases of interest corresponding to different 
orders of the dimensionless numbers are carried out. 
We will consider A~' = O(~ ) ,  P~t = O(~"), Npl : O(e p) 
and NLj = O(e q) with (m, n,p, q) = (2, 1,2, 0), 
(1, 1, 1,0), (1,0,2, 1) and (2,2,2,0).  The preceding 
four combinations for (m, n,p, q) lead to four different 
equivalent macroscopic descriptions. The mass and 
the heat transfer problems can be investigated sep- 
arately. We first investigate the four different models 
for vapor mass transfer. Next, we study the cor- 
responding models for heat transfer. By means of the 
homogenization technique each formulation is pre- 
sented in relation with the selected dimensionless num- 
bers characterizing the phenomena. We thus obtain 
the applicability conditions of the different formu- 
lations as well as the different effective parameters 
characterizing the averaged properties of the medium 
at the macro scale. 

3.1. The mass transfer model 
Model 1: vapor mass transfer model by diffusion- 

advection and evaporation-condensation 
In the first case, we consider A~ =O(e2) ,  

P~t = O(e), Npl = O(e 2) and NL~t = O(1). Equations 
(5), (10), (12), (13), (15) and (16) take the dimen- 
sionless form 

2 &Ov &o~ ~ / d~v\  
e pg ~ -  + epgVgi ~3y,. ~3y,. ~PgD~iyi)  = 0 i n f ~ g .  

(45) 

The gas state equation is given by 

MgPg[ngl 
Pg - RTg in fig. (46) 

The boundary  conditions are written : 

2 ~(Dv 
c. p~vpiNgWpgD~yiNg = 0 on Fg, (47) 

pl(g, Vli--wi)N~ = C3 pg(g.- 31)pi--wi)N~ on Fgl 

-- e2g ~-f~y N~ + 2, ~y Ng~ -- pgDLv ~yS N~ = 0 

(48) 

o n  Fg I 

(49) 

(50) 0(O v 
pgD~yiNg = 0 on F~s. 

After introduction of the expansions in the dimen- 
sionless equations, successive boundary  value prob- 
lems are obtained at the different orders of e. The 
detailed calculus is itemized in Appendix A (Section 
A-l) .  

The first order description is governed by the fol- 
lowing macroscopic equation (A19) 

~°~°- o oo. &°° ~ / ~°~°~ 0x-S) 
0 +Paqvr,, = 0. (AI9) 

The different effective parameters in (A19) are as 
follows : 

• the porosity of the gaseous phase is given by 

1f~1 (51) n~ = Ifll 

• the tensor D* is the macroscopic (or effective) 
diffusion tensor 

l fo (¢3~j.+_iij)d~ (52) 

where ~ is defined in Appendix A (Section A-l) .  

• qvr,, is the vapor source per unit  volume defined as 
the volume average 

 frO * p , d  q~r~ = vpiN i d S  = 0 ~(n , )  
gl Pg 

l p l R d  o o  
_ ( 5 3 )  

If~lp °Mgd t \p °  j 

The mass transport  in Model 1 is due to diffusion- 
advection with evaporat ion-condensat ion effects at 
the liquid-gas interface. 

The vapor source qvr,~ which is linked to the vari- 
ation of the water content  can be connected at the first 
order of approximation to the gas state variables [see 
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Appendix A, equation (A25) and (A28)]. Note that 
d/dt in equation (53) stands for the Lagrangian 
derivative. Furthermore, it can be shown that the 
effective diffusion tensor D* is symmetric and positive 
definite. It classically depends on the molecular 
diffusion as well as the geometry of the cell period. 
Due to the considered value of the P6clet number, it 
is not dispersive (Auriault and Lewandoska [5]). 

o,~- is the macroscopic (or effective) velocity of the Ugi 
gaseous phase already determined previously in (44). 

Model  2:  vapor mass transfer model by evaporation- 
condensation only 

We consider now A~ = O(e), P~ = O(e), Np~ = O(e) 
and Nzd = O(1). The relative magnitude of the tran- 
sient term is increased by an order of magnitude as 
well as the contribution of the vapor transfer on Fgv 
The equations to be investigated are 

&o~ &Ov ? f 8o~\ 
8pg~-~ ~-f, pgVg i OYi O y T t p g D ~ ) = O  i n  ~"~g 

(54) 

M~P~lf~g[ 
Pg RTg in ~'~g. (55) 

The boundary conditions are written : 

c~o~ 
e.pavpiNgi'k-pgD~yi-Ng = 0 on Fg I (56) 

Pl(evu- wi)N~ = e3pg(e 3vpi- wi)N g on Fg~ 

--e2g ~y  N~ + X, ~y . Np = 0 

(57) 

o n  l~gl 

(58) 

(~O) v 
pgD~y N g=O onFg~. (59) 

The process of homogenization yields to the macro- 
scopic governing equation which consists of the bal- 
ance of the transient term and the vapor source per 
unit volume and unit time : 

ngpO c3°~°v + 0 
0 t -  P"q~r~' = O' (60) 

In this case the convective and diffusive terms are not 
present in the equivalent macroscopic behaviour at 
the first order of approximation, q~r~, is defined by 
(53). 

Model  3 : vapor mass transfer model by adveetion 
In order to see the competitive influence of advec- 

tion, the P6clet number is increased by an order of 
magnitude whereas the dimensionless parameter Npt 
related to the vapor flux and the heat flux at gas- 
liquid interface is decreased, respectively. We take 

A7 = O(e), P~t = 0(I) ,  Np, = O(e 2) and NLd = O(e). 
The local equations are now written in the form 

8~v 8O~v 8 f ~7~\ 
epg~+pgvgi  By, ~yttPgD~y~)=O ina< 

(61) 

MgPglnl in g~g. (62) 
P g  - RTg 

The boundary conditions are 

c3O~v 
e~p~vp~Ng+pgD~y~,N g = 0 on Fg, (63) 

pl(/~l)l i--  wi)Ngi = ~3pg(g-3Upi-- wl)N g o n  Fg  I 

aT, 8T~ &o~ 
--e2g _ ~ N g + 2 , - -  = 8y~ Oy, N~ - epg DL, ~y~ N~ 0 

(64) 

o n  Fgj 

(65) 

(66) 

in ~g 

(68) 

Pg - RTg in ~g. (69) 

The boundary conditions are written : 

2 0(Dr g 
g P a v p i N g i T p g D ~ N i  = 0 on  l~gl (70) 

cy~ 

pl(SVli--w,)N g = 83pg(8  3Vpi-Wi)N~i o n  Fe~ 

(71) 

~O) v 
pgD~yi N~ = O onFgs. 

After applying the homogenization procedure we 
obtain the macroscopic governing equation that con- 
sists of the balance of the transient and the advective 
terms 

0 00)0 - -  0 0ell ~3°9v° ngp~ ~ -  • - -  = 0 (67) ~ pgvg, 6~xj 

Cg,.'0eff is the macroscopic (or effective) velocity of the 
gaseous phase already defined previously in (44). The 
appropriate local boundary value problem for a 
periodic cell is given by the set of equations (A29)- 
(A37). The detailed calculus is carried out in Appendix 
A (Section A-2). 

Model  4:  vapor mass transfer model by diffusion--dis- 
tillation effects 

Another case of interest is given by the following 
situation where the dimensionless numbers are 
A7 = O(e2), P~) = O(e2), Npt = 0(~ 2) and 
NLj = O(1). The normalized forms of equations (5), 
(10), (12), (13), (15) and (16) are in the form 

2 &or 2 ~3O9v 8 / &Ov\ 
8 pg ~ t  "3V '~ PgUgi cy i c~yi t p g D ~ )  = 0 
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OT~ OT~ &o~ 
- e2g-g-- Ngi + 21-g-- Ngi 0 uYi UYi -- pgDLv ~Yi Ng = on Fg~ 

(72) 

(73) 
~(D v 

pgD-~yiN ~ = 0 o n  Fg,. 

The homogenization process yields to the following 
first order macroscopic description 

* 0 0 
Qt ~x~ Dijpg Oxj +Paqvr,, = 0 (74) 

where D* and qvr~, have been already defined in (52) 
and (53). 

Note that the above model is similar to the model 
of Moyne et al. [26] [see equation (3b)]. 

3.2. The heat transfer model 
This section is devoted to the resolution of the heat 

problem. The above four different situations yield 
different macroscopic heat transfer descriptions. Let 
us first investigate the heat transfer model cor- 
responding to Models 1 and 4: Npl = O(e 2) and 
NLj = O(1). The local normalized equations are 
written in the form 

2 , ~ y ) = 0  i n n ,  (75) 

eZ (pCp)t ~ -  + e(PCp)lV" ~ye dye\ ~y.,}=O inn l  

(76) 

T g = T ,  onFg~ 

e)~g ~ i  vyi~Ts --25~7-N~ = 0 onFgs 

2 0vg 0Tg e 
e (pCp)g~- +e(pCp)gVg~ Oy~ Oy~ \ g Oy~J = 0 

in f~g. (77) 

The above system of equations is completed by bound- 
ary conditions : 

Tg = TI onFgl (78) 

O Tg O T, ~ov 
-e2g~yiNg+2,~yiUg-pgDLv~yiUg = 0  onFgl 

(79) 

(80) 

(81) 

and 

Tl = Ts on Fls (82) 

2,~yl Ni--ZS~y N, = 0 oaF,s. (83) 

Introducing the developments (37)-(41) in the set 
(75)-(83), we obtain successive boundary-value prob- 
lems for the different terms of the expansions. The 

problems are investigated in Appendix B and yield to 
the macroscopic equivalent description (B41) 

c~T ° 0 [ , ~_]~T°-I 
(ns(pCp)s + nl(pcp)l) 

+" c "v °~rfoT° --L o O. (B41) tP ph 1, ~Xj vPaqvvg~ = 

The different effective coefficients in (B41) are as 
follows : 

• ha, 6 = {s, 1}, is the volume fraction of the solid and 
the liquid phase 

• the tensor 2~* i, 6 = {s,1}, is the macroscopic (or 
effective) conductivity tensor of the phase 6 : 

2* i~=~l fm2 ,~ (~+I i j )d f f t .  (B42) 

Note, that the above macroscopic model (B41) reveals 
a coupling between heat and mass transfers, as well 
as the models of Philip and de Vries [15, 17, 27] [from 
equations (la) and (lb)] and Moyne et al. [26] [see 
equation (3b)]. The heat transfer is by conduction and 
convection incorporating a heat flux by evaporation/ 
condensation at the gas-liquid interface. However, it 
differs from Philip and de Vries model's due to the 
fact that the macroscopic equations ( la)  and (Ib) 
describing the combined heat and moisture transfer 
are derived from two independent variables : the tem- 
perature and the volumetric liquid content of the 
porous medium. The model (B41) has to be completed 
by the Darcy laws that gives the velocities v~i and vgi 
in the liquid and the gas phase and the associated 
balance equations (Auriault [2]). 

On the other hand it is possible to show that heat 
transfer Model related to Model 2 is (B41) where the 
last term becomes predominant, that yields pa ° = 0. 
However, pO is a dimensionless quantity that should 
be O(1). Therefore the heat transfer is not hom- 
ogenizable. Finally the heat transfer model related to 
Model 3 is (B41) with a negligible phase change term. 

4. CONCLUSION 

The main purpose of the present paper is to produce 
new formulations bearing direct relevance to heat and 
mass transfer in liquid-gas porous solid systems. The 
simultaneous processes of heat and mass transfer are 
investigated in function of the relative weight of 
different dominating phenomena in presence. The 
problem is revisited from a theoretical point of view 
using a homogenization technique based on the double 
scale expansions. The present method allows to specify 
the domains where the different descriptions can be 
used. The heat transfer occurs by conduction and 
convection in presence of phase change by evaporation/ 
condensation. 

Concerning the mass transfer, four regimes can be 
distinguished : 
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Fig. 2. The homogenizable and non-homogenizable domains 
for the mass transfer, Np~ ~< O(e~). 
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Fig. 3. The homogenizable and non-homogenizable domains 
for the mass transfer, Not = O(~). 

Model  1 : 

.. ~o a ~ v  ° O ~ °  - -  0 Oeff 
rtgpg - ~ -  5- pgVg i OXj 

Model  2 

Model  3 

axi tDupg ~x/  ) 

0 + P~q~r,~ = O. 

~q 0 
0 ~(Dv - -  0 

ngpg ~ 5-Pa qvr~ = O. 

& ° ° -  0 oo. a ° °  0 n g P ° ~ T  s-pgVgi a T  = 

Model  4 

a ~  ° a / o &o~  o 

Concerning the heat transfer, Models 1 and 4 yield 
the same macroscopic behaviour which is written as 
follows : 

~T ° ~ F ,, aT°7 
('s(pCp)s-H"I(pCp)1) 6~ , 

" c ' v  ° e f fOT° -L  o =0.  
tP p), l, ~xj vPaqvr~, 

Model  2 shows a non homogenizable heat transfer 
description whereas Model  3 yields the above heat 
transfer relation, but with negligible phase change. 

It can be shown that there are continuous passages 
from mass transfer Model  1 to Models 2, 3 and 4. 
Model  1 corresponds to the most general regime. The 
transient term plays a key role in the process. The 

strong vapor  source at the l iquid-gas interface has to 
be notice in Model  2, i.e., when the transient term is 
increased by one order of  magnitude relative to Model  
1. Note  that in Model  4 the convection is negligible in 
the mass balance. Indeed, evaporat ion/condensat ion 
is still predominant  at the upscaled macroscopic, 
together with diffusion. 

Concerning the heat transfer, Cases 1 and 4 lead to 
the most general situation where convection, con- 
duction and transport by evaporated water take place. 
Note  also that the resulting macroscopic equation 
reveals a cross-coupling effect between heat and mass 
transfers. 

O(E -2) 

O(¢-b 

o<~ o) 

0(~ z ) 

o(Eh 

o(~ 3 ) 

0(~) 

0 0 

@ o 

0 0 0 

0 

@ 

P~# 

<__ O(E 4) O(~ 3 ) O(e 2) O(e I ) O(~ 0) O(~ "1 ) O(g "2 ) 

0 : homogenizabl¢ O : non-homogenizable 

Fig. 4. The homogenizable and non-homogenizable domains 
for the mass transfer, Nol = O(e°). 
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t N p /  t N p /  
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Fig. 5. The homogenizable and non-homogenizable domains 
for the heat transfer, B~ = BI = B~ ~< O(e) and 

PI = Pig ~< O(1). 

$ Nua 
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O(E 3) O(E 2) o(EL) O(e °) O(e-b O(~ -2) O(~ -3) 

Q) : homogenizable • : non-homogenizable 

Fig. 6. The homogenizable and non-homogenizable domains 
for the heat transfer, B~ = B~ = B~ = O(e) and 

e~ = P~ = o @ .  

In applications, e.g., geothermal engineering, all 
these models are of  interest. In the near well regions 
where high pressure gradient occurs, convection is 
predominant.  Models 1, 3 are to be used. Away from 
the well, convection and diffusion may become of  
the same order of  magnitude. Model  1 is then more 
appropriate. Models 2 and 4 are more convenient in 
the regions where the liquid phase is boiling and 
diffuses in the air filled pores. Finally, it is necessary 
to use model  1 when convection, diffusion and evap- 
orat ion-condensat ion effects become of the same 
order of  magnitude. 

The present approach allows the examination of  a 
whole class of  transport processes in heterogeneous 
media with respect to dominating phenomena. The 
necessary and very important  condit ion for this theory 
to be applied is the existence of  a scale separation 
characterizing the heterogeneity of  the medium. If  this 
requirement is not  fulfilled, an equivalent macroscopic 
description does not  exist, and the phenomenon and 
the medium are not  homogenizable. Concerning the 
mass transfer, the situations called homogenizable 
and non-homogenizable situations for the mass trans- 
fer are shown in Figs. 2-4, and in Figs. 5 and 6 for 
the heat transfer, respectively. 

Our investigations open up future prospects. The 
first application concerns for example geothermal 
reservoir engineering such as the exploration of  the 
heat of  hot  and dry rocks. In particular, for petroleum 
and geothermal reservoirs, this method brings together 
new formulations associated with reservoirs which 
govern fluid dynamics and the different exchanges of  
matter  and energy in the porous medium. Moreover ,  
in order to obtain reliable prediction, it will be of  
special interest to extend the present analysis to natu- 

ral fractured media. Such study should take into 
account the combined effects of  various phenomena 
as the swelling of  the porous matrix, the influence of  
hysteresis and the physicochemical interaction 
between the solid phase and the different fluids. 

Finally, it must be stressed that the homogenizat ion 
method allows to model  mathematically the process 
of  heat and mass transfer and can be applied no matter  
if  the medium is periodic or  random (Auriault  [4]). 
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APPENDIX A 

A-1 : Model 1--homogenization 
We introduce in equations (45)-(50) asymptotic expansions 
in the form (37)-(41). Due to relation (42) the gradient 
operator ~/0y is changed to 

~yy ~xx}' (A1) 

At the first order of approximation (46) yields 

pO _ M~P ° In~l (A2) 
RT 7 

As we shall see below [see Appendix B, equation (Bll)] 
the first order of  approximation of the temperature is y- 
independent. From equation (43), the first approximation of 
the gas pressure is y-independent. Therefore (A2) gives 

pgO = pg0 (x, t). (A3) 

By identifying like powers of  e, we extract from (45), (47) 
and (50) the following boundary value problem for ~o ° : 

f 0 &°°\_ 
tp~ D ~-y~) - 0 in fl~ (A4) O)'i 

. &o ° 
p ~ D - - N  g = 0 on Fgl (A5) 

pgD ..... Np = 0 onFg~ (A6) 

where co ° is f~-periodic. 
It is possible to show that o9 ° does not depend on the space 

variable y 

~Ov ° = ~°(x,  t). (A7) 

Consequently, (A2) and (A7) give 

pO = pO _ pO = p0 (x, t). (A8) 

At the next order, taking into account the preceding relations 
(A3) and (A7) the cell problem for oJ~ becomes 

in.. (A9) 

D t ~ y l  + ~ x l ) N p = O  onFg, (A10) 

D / ~ 7 - + ~ 7 : - / N ,  = 0  onr ,~  (Al l )  
\ uv, ua, / 

where ~o~ is f~-periodic. 
It can be seen that e)~ is a linear function of  the the 

macroscopic gradient of  o) ° 

~o ° 
co~ = ¢ ~ x ,  + ~ ( x ,  t). (A12) 

At this stage of  the process o3~ (x, t) is an arbitrary function 
of  the variables x and t only. Introducing the expression 
(A12) into equations (A9)- (Al l ) ,  gives the local linear 
boundary value problem for ~,: 
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0 0 

Dp°\~y, = 0  on Fg, and Fg, (A14) 

~ is f~-periodic. To render the solution unique it can be 
chosen of zero mean value, (~)  = (1/]~l)~n ~ d~  = 0. 

Let us examine the following order of apt~roximation. The 
equations that govern the vapor mass fraction 09~ are found 
to be 

o ~,~° o ol~O;~ ~o°~ ", o r o lO~,'v o<o°"17 
,', w + + 

o r o/~<~ o<o']7_ 2 [ io<~' ~,°~7 

in ~g (A15) 

ooO (~<~ o~\7 r . io~'~ 0°,°\7 

- -  0 0 g - --p~vr, iN i on Fgl (A16) 

D ° {O¢°~ + ~ ) ] N p  + [Dp~ /O°)~ 0°9°\7 g 
Pg t~Yi i t ~y  I -t- ~Xi ) J N  i : 0  

onF~, (A17) 

~o~ is f~-periodic. 
The existence of  co~ introduces a compatibility condition. 

Equation (A15) can be seen as the balance of the periodic 
flux 

-°o,.t777y, +~x, ) -oo,  t Oy, + ~ )  

in the presence of the source 

°< W +° , " , '  t yt + + ox,)j 
The periodicity of the flux imposes condition on the sources. 
This can easily be checked by integration (A15) over f~g. 
Using the divergence theorem, the periodicity property and 
the conditions (AI6) and (AI7) on the boundaries Fg~ and 
Fgs, yields 

0 oo, ofo P'-U Jo, da+°' ~" t,~y, + an- ~ ,  

x + ~ - - - l d Q + p ~  / v p i N  i dS = 0. (A18) 
f t.~y, .x,: &, 

Introducing now the relations (A 12) for ~o~, (A 16) and (A 17) 
for the gas velocity, and dividing by [f~l gives the first order 
macroscopic description 

o&O ° _  o,oo~0~ ° O f , o c~°\  o 

(AI9) 

The different effective parameters in the equation (A19) are 
as follows : 

• the porosity of  the gaseous phase 

I~ ,  I (a20) 
n, = I~l 

* the tensor D* is the macroscopic (or effective) diffusion 
tensor : 

D ' = l  f D{~+17"~dIl (A21) 
" I i J .  t,y, ' )  

qvr, is the vapor source per unit volume defined as the 
vol~lJme average 

o . q,r,, = v p i N  i dS. (A22) 

Elsewhere, the first order approximation of equation (48) 
yields 

p° v°~Nr = -- p,w° Nr.  (A23) 

By integrating on F~ it becomes 

fr ,P°v°~N' aS= - f%P,w°, N'dS 

) , d n  = - p ,  ~ - .  (A24) 

Then we get 

1 fr Pi d (Ini l~  pl d q~r , = - -  v°iN g d S  
, i~l ,, = - ~ a T t ~ ) = - ~ m  (=') 

(A25) 

where nl = [flll/[fll is the water volume fraction. 
On the other hand, from (A2), the porosity of  the gaseous 

phase is written 

0 0 
Ifl,[ 1 R pgTg (A26) 

n ,  If~l - If~i Mg pO 

Elsewhere 

n~ = 1 - (n I + n~) (A27) 

then, due to relations (A25)-(A27), the vapor source 
becomes 

1 p, R d,__,fp°~°'~. 
(A28) 

qvr, inl p,0 M, at \ p7 ) 

A-2 : Model 3--determination of the vector field ~ : 
The boundary value problem for o~ is written 

o 0~ ° _ o o ~ 0 ~  0 ~ o ~ _  2 [~po  ( ~  + ~<°7 ]  = 
P~W+a~.'l~777y, + ox,) ~y, \~y, o:<,)j 0 

in f~g (A29) 

(A30) 

where 

¢i = ~,(Vx P°,  Y) is y-periodic. (A33) 

The vector field is in this case the solution of the following 
cell problem : 

(&o~ &o°\  
D ~-~y. + 8~-x/) Np = 0 on F~ 

o C~-y + ~-x~)~vp : 0 o n t . .  (A31) 

In that case ~, is not only y-dependent but it also depends on 
the macroscopic gradient of  pressure of  the gas phase V ~  ° 

co~ = ~"~-x~ +¢b~(x, t) (A32) 
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e o (<+,D] _ o.o.o.o +,,,) ,=o 

in ~g 

p ° D { e ~ + I o ) N ~ = O  on Fg, and Fgs 
keys 

where 

(A34) 

(A35) 

'L <~> = ~ ~ d~  = 0. (A36) 
s 

APPENDIX B: THE HEAT TRANSFER M O D E L ~  
HOMOGENIZATION 

Recall that all the quantities appearing in equations (75)- 
(77), (79), (81) and (83) are dimensionless and the terms in 
factor of  e2, e and ~0 are of order 1. 

At the first order we have 

A&serh Oyg \ Oy, ) = 0 in O~ (B1) 

69 ( OT°\ 
~y~yi t 2 , ~ ) =  0 in~l (B2) 

a / e T ° \  
~y  t2,-~7"y.)= 0 in~<. (B3) 

The boundary conditions are : 

Ti ° = T  O onFg, (B4) 

a T p  
2 t - - N g  = 0 on F~I (B5) e),~ ' 

T~ = T ° on  V,~ (U6) 

aT g 
2 ~ - - N g  = 0 on Fg~ (B7) 

ey~ ' 

T ° = T  o onl7,, (B8) 

aT ° , aT  ° , 
2i ~ f - N , - 2 ~ - y  N, = 0 on Fis. (B9) 

From equations (B1), (B2), (B5), (B7)-(B9) comes: 

T o = T o = T°(x, t). (Bl0) 

Taking now into account equation (B3), (B4) and (B6) 
yields : 

T o = T o = T ° = T°(x,t).  (Bl l )  

By using the above relation, it comes at the second order of  
approximation 

t ~ -  i + = 0 i n f~  (BI2) 

(eTi I aT° ' \ ]  
e 2 t t ~ Y '  + 0 ~ - ~ ) J = 0  inf~l (B13) c3y~ 

t~7-y, + &~TJJ = 0 inf , ,  (B14) 

T~ =Tis on F,~ (B15) 

{~T~ c3T°\ 
+ d x - J N ~  = 0 on Fgl (BI6) ;t, \ ey, 

where (A10) has been taken into account. 

T) =Tis on Fg~ (BIT) 

+ ~xTx,) N,g = 0 onFg~ (B18) L \ ay~ 

T~ ~ = TJ on Fl~ (BI9) 

{c3T~ eT° \  ~ {c3Tl' #TO\ , 

(B20) 

It can be shown that the periodic field temperature T~ is a 
linear function of  the macroscopic gradient of  7 °, up to an 
arbitrary function 7~ : 

T ~ ~T° _j = z~,T~x, " + T'(x, t) 0321) 

where c~ = {s,l,g} is for the solid, the liquid and the gas 
phase, respectively. 

The functions Z~, are given by the following boundary 
value problem : 

\ u ) ' i  / i 

Z~ = Xu = ~ ,  (B25) 

(Z~j) = 0 (B26) 

where a = {s, 1, g} and 6 = {s, 1}. X,~ is O-periodic. 
At the third order, the homogenization process gives : 

aT 0 

- x~ ~Wy,  + 0 in ~ (B27) 

eve L[x,(er~ or :q_± le~,, eTO~q 
(P 'P '  ~ -  - ay, L kay, a x , / j  &,  [ ; '  + t + 7)j 

{c9 Tt t e T O \ 
+ (pCp)iV~ t~fTy. + ~xTfl = 0 in £~, (B28) 

eT ° e [ ~ ( e T ~ + e T a q  e r  /era eTo)] 
":%, e, ~7,, "'re,,, ~ i j - ~ [ ' ~ ' t , ~  + ex, i j  

o o (OTis OT°\ 
+ cp.qpg vgi ~ + (B29) , ~ ) = 0  inag  

% 

T 2 = Tg 2 OnFgi (B30) 

- -  N g 

(#a,~ eco~'\] 

- i v +  
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- DL~p~tay  i +~-~-x~)JN~=0 onFv¢ (B31) 

or with (A16) 

/aT? a T : \  lOT! aT°'~ N,4_ L "  )'~ I-~-- + -x---I N~ -- 2 s I ~ + o o.,~ = 0 toy, ox, I kay, 7Z-~,) ' -v~,O~:, ,  

on F,i (B32) 

r~ = r~ on r~s (a33) 

(ar~ ar:~ lar~ ar°x 

(B34) 

T? = T~ a n t i ,  

/ar~ ~r'~ ~ . (or? a r m  , 
"~s t TgTf + 7-g, J sv~- x, t Oy, + 7Z-~,)<v, : o  

(B35) 

on Fis. 

(B36) 

Integrating equation (B27) in fls and equation (B28) in fl~ 
and using the divergence theorem give successively 
In f~s : 

[o c sar°da c a l~ (ar~ ar:~]da 

k ay, Ox,/J 0 (B37) 

o a:of +,,,]dO 
Oxi ox: j~, k cyi ) 

2 T ~ OTs a s , 

o r  

lil,l@Cp) s a~  ° 

/ar~ ar~'k , 
- f v , ) . ~ t - ~ y i + ~ x i ) N i d S = O .  (B38) 

In f~l: 

aT ° a 
fn(PC,)i-~-[-df~-fn-jy~y~[2ilaT' t ~ y  + 0--~-r~ ) J  ell' aTii ' ~ ] - -  

k-~y, + ax, ) j  

fc~ ' / a  T l l  ~T°'~ " -  

or 
0T o 

If41(ocp)~ at 

×fov°(~+I.]dO-f ),,faT? OT)'~. ,  ._ 

fr  [aT? OT?k_ , ._ - ~,lV+~),<,<,~.=o. (B~o) 
u 

After using the periodicity property and the conditions on 
the boundaries F~s, Fgs, F,t, integrating (B14) over f~g and 
adding member to member (B38) and (B40), we obtain the 
macroscopic description 

, T  O ~3[(2sq + ~-us) aT° 1 
xnstpCpx'+nitpcp'l" tgt ax# Ox: 

o,n dT O 
+(pcp)lvu ~ - - L v p ° q v r ,  = 0 (B41) 

where the different effective coefficients defined are as fol- 
lows : 

• n~, 6 = {s, 1}, is the volume fraction of the solid and the 
liquid phase 

• the tensor 2":, 6 = {s, 1}, is the macroscopic (or effective) 
conductivity tensor defined as 

1 a~s x.,':~ l x~ ( ~  +z,,]da. (B42) 


