
16th ASCE Engineering Mechanics Conference
July 16-18, 2003, University of Washington, Seattle

ON THE MEANING AND MICROSCOPIC ORIGINS OF “QUASISTATIC
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ABSTRACT
A series of numerical simulations of model 2D dense granular samples under gradually varying

stress states allowed us to study the influence of microscopic constitutive parameters and test conditions
on the response of the material submitted to monotonous, quasistatic deformation. The relevant control
parameters can be defined as a small set of dimensionless numbers. Our simulations also reveal the
existence of two different régimes. In the first one, the macroscopic strains stem from the deformation
of contacts. The motion can be calculated by purely static means, without inertia, stress controlled or
strain rate controlled simulations yield identical smooth rheological curves for a same sample. In the
second régime, strains are essentially due to instabilities of the contact network, the approach to the
limits of large samples and of small strain rates is considerably slower and the material is more sensitive
to perturbations. Locally, strains and particle displacements exhibit considerable fluctuations which
correlate on length scales much larger then the grain size. These results are discussed and related to
experiments : measurements of elastic moduli with very small strain increments, and slow deformation
(creep) under constant stress.
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INTRODUCTION
Despite its now widespread use (Kishino 2001), discrete numerical simulation of granular

materials, motivated either by the investigation of small scale (close to the grain size) phenom-
ena, or by the study of microscopic origins of known macroscopic laws, still faces difficulties.
Microscopic parameters, some of which are to be defined at the (even smaller) scale of the con-
tact, are incompletely known. Macroscopic constitutive laws do not emerge easily out of noisy
simulation curves, and the numerically observed dynamic sequences of rearrangements might
appear to contradict the traditional macroscopic quasistatic assumption. Detailed and quantita-
tive comparisons with experiments can be used to adjust microscopic models, but a systematic
exploration of the effect of the various parameters throughout some admissible range is also
worthwhile. This is the purpose of the present study, which also addresses the fundamental is-
sues of the macroscopic and quasistatic limits, in the case of the biaxial compression of dense,
two-dimensional (2D) samples of disks.
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In the next section, we introduce the model and the numerical methods and define dimen-
sionless parameters that are robust indicators of the relative importance of different phenom-
ena. Rheological curves can be evaluated in the large sample limit, and their sensitivity to
parameters assessed. We observe two different mechanical régimes, according to whether the
dominant microscopic origin of strain is material deformation in the contacts or rearrangements
of the contact network. We study the microscopic heterogeneities of deformation fields. Con-
nections to some experimental observations are suggested, and the conclusion section outlines
further perspectives.

NUMERICAL MODEL AND PROCEDURES

Grain-level mechanics
Our computational procedure is one of the simplest types of ‘molecular dynamics’ or ‘dis-

crete element’ method (Cundall and Strack 1979) for solid grains. We consider 2D assemblies
of disks, with diameters uniformly distributed between ����� and � , and masses and moments
of inertia evaluated accordingly (as for homogeneous solid cylinders of equal lengths). � will
denote the mass of a disk of diameter � , and � the number of disks.

These grains interact in their contacts with a linear elastic law and Coulomb friction. The
normal contact force �	� is thus related to the normal deflection (or apparent interpenetration)


of the contact as �	����
�� 
�����
�� , � being the Heaviside step function (equal to � for
����
, to

�
otherwise). The tangential component ��� of the contact force is proportional

to the tangential elastic relative displacement, with a tangential stiffness coefficient 
�� . The
Coulomb condition � � � �! #"$� � requires an incremental evaluation of � � every time step,
which leads to some amount of slip each time one of the equalities �%�&�(')"$��� is imposed.
A normal viscous component opposing the relative normal motion of any pair of grains in
contact is also added to the elastic force �*� . Such a term – of unclear physical origin in dense
multicontact systems – is often introduced to ease the approach to mechanical equilibrium. Its
influence will be assessed in part 3. The viscous force is proportional to the normal relative
velocity, and the damping coefficient in the contact between grains + and , is a constant fraction-

(
�  -  .� ) of the critical value � �0/	132*452�627498:2�6 �<;>=@? . (In a binary collision the normal ‘restitution

coefficient’ is
�

for
- �A� and � for

- � �
).
-
, 
B� , 
C� , and " are the same in all contacts.

The motion of grains is calculated on solving Newton’s equations.

Numerical compression tests
Two different types of boundary conditions are used : either the container walls are physical

objects, with masses, satisfying Newton’s equations (but requested to move in the direction per-
pendicular to their orientation), or periodic boundary conditions (no walls) are implemented.
In both cases, the changes in cell size and shape under controlled stress involves specific dy-
namical parameters which could be discussed in more detail. Here we will simply deem such
parameter choice innocuous if results are reproducible, size-independent and consistent. We
use soil mechanics sign conventions for stresses and strains. Samples are first compressed
isotropically under a constant pressure D . Once a mechanical equilibrium is reached under
pressure D , samples are submitted to biaxial compression tests. The lateral stress, E ; is main-
tained equal to D , while either F ? is increased at a constant rate GF ? (a procedure hereafter
referred to as SRC, for strain rate controlled) or E ? is stepwise increased by small fractions of
D , and one waits for the next equilibrium configuration before changing E ? (a SIC, for stress
increment controlled, procedure). In the sequel H denotes the ratio

� E ?JI E ; � � E ; , while F ? and
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F�� � F ;�� F ?	I F ; F ? are respectively termed ‘axial’ and ‘volumetric’ strain, in analogy with 3D
axisymmetrical triaxial tests.

Dimensional analysis
Rheological curves and internal sample states obtained in monotonous biaxial tests are

defined in the macroscopic limit ��� � . If expressed by relations between dimensionless
quantities F ? , H , F�� , they should depend on the friction coefficient " and on ratio 
B� � 
�� ,
and on three other dimensionless parameters: ��� 
 � � D , the stiffness parameter, which
expresses the level of contact deformation, � � GF ?
	 � � D , the inertia parameter, evaluating,
in SRC (constant GF ? ) tests, the importance of dynamical effects, and

-
, the damping parameter,

introduced previously, characterizing viscous dissipation. The contact coordination number is
a decreasing function of � . The quasistatic limit is the limit of small � .

BIAXIAL COMPRESSION OF DENSE SYSTEMS : RESULTS

Preparation, initial states, procedures.
The sample preparation procedure is well known to exert a strong influence on the me-

chanical properties of a granular sample as, in particular, dense or loose initial states respond
differently (Wood 1990) to load increments. Moreover, experiments also showed that density
is not sufficient to determine the behaviour in a triaxial test (Benahmed 2001). Numerical sim-
ulations may in principle attempt to imitate as closely as possible laboratory experiments. The
simulations of such processes as deposition under gravity within a walled container is however
difficult, as it requires large number of particles. Inhomogeneous states one obtains in such
cases request samples much larger then a representative volume element, which is itself much
larger than the grain size. Moreover, the transition from an initial fluid-like configuration to
a solid-like grain assembly is bound to be sensitive to static and dynamic parameters (Silbert
et al. 2001).

Here we focus on the slow quasistatic deformation of certain types of granular assem-
blies, once they have been prepared in some well defined initial state. Therefore we leave
a detailed (and necessary) study of the preparation process to future research, and adopt a
simple numerical procedure which provides us with homogeneous, reproducible, sample size
-independent initial states in equilibrium under an isotropic pressure. The numerical proce-
dure is an isotropic, monotonous compaction from an initial gas-like configuration with a solid
fraction � of about � �
� . To obtain a dense sample, a different, smaller value is attributed to
the coefficient of friction in this initial dynamic compression step. Two series of samples are
studied here. The first one – called series A hereafter – was prepared between solid, frictionless
walls. It was observed in that case that one had to set " to zero in the preparation stage if we
were to obtain a homogeneous stress field. Simulations of series A were therefore performed
starting from the very dense states which result from a compression without intergranular fric-
tion (Combe 2001). The results below, some of which were presented in (Roux and Combe
2002), were obtained with "�� ��� ��� during biaxial compressions, and a rigidity level � � � ��� .

C� � 
 � was set to � ��� . Biaxial tests were SIC, with small H steps �0H � � ����� . Each succes-
sive mechanical equilibrium is deemed attained when the total force (or torque) on each grain
is less than � � ��� � D (resp. � � ��� � ? D ) and when the relative difference between the internal
overall stresses (deduced from non-viscous intergranular forces) and their prescribed values is
less than � � ��� . - was set to high values (near � ) and � ranged from 1024 to 4900. In the
initial isotropic state, the solid fraction (extrapolated to ��� � ) is ��� ��������� ' ��� � � � , all
but � � � � of the disks carry forces and the coordination number, ignoring those inactive grains,
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� � � ��� (%)

� ��� ����� � ��� ' � � � � ��� � � ��� ' � � � � � ? � ��� �
� �
� ����� � � � ' � � � � ��� � � � � ' � � � � � ? � � �
� ��� ����� ��� � ' � � � � ��� � �	��� ' � � � � ��� � �	�

TABLE 1. Initial state data for series B simulations.

FIG. 1. 
 versus axial strain �
� in B samples of 2 different sizes.

is ���
� � � � , very close to the isostatic limit (Roux 2000) of

�
reached with rigid, frictionless

disks in equilibrium.
For the second series of simulations, series B, we used periodic boundary conditions. Sam-

ples are thus devoid of edge effects. They shrink homogeneously in the isotropic compression
stage. Series B samples were compressed with " � ��� � � , and subsequent biaxial tests per-
formed with " � ��� � . Different stiffness levels, ( � � � � � , � � � and � � � ) were used, with

C� � 
 � fixed to � , as well as different inertia parameters � ( � � ��� , � � ��� , sometimes � ��� � ).
SRC tests were compared to SIC ones (with � H � � � � ? and

-
� � ). Samples of 1400 and 5600

disks were simulated. The initial solid fraction, due to the finite " value during compression,
is lower than for A samples, as well as the coordination number � among force-carrying disks.
Values of � , � , and the fraction of inactive disks ��� , for the investigated � values are given in
table 1. The typical aspect of H versus F ? curves is illustrated on fig. 1, for series B samples
with ��� � � � and � � � � ��� . They are characteristic of very dense samples, as in (Kuhn 1999).
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Stress-strain curves and macroscopic limit.
The increase of H with F ? is initially quite fast, H reaching about

�����
for F ?�� � � ��� . Then

the deviator stress keeps increasing and reaches an apparent plateau for F ?�� ��� � � . Those dense
samples are markedly dilatant (fig. 4 below), after a very small initial contraction their volume
steadily increases, even after H appears to have levelled off. The important stress fluctuations in
those SRC tests is striking on fig. 1, but are considerably reduced, as well as sample-to-sample
differences, as � increases from � � � � to ��� � � . Dilatancy curves (see below) are smoother.
Smooth stress-strain curves can thus be expected in the macroscopic limit � � � . This was
more carefully checked for simulation series � , on studying three sample sizes : fig. 2 below
shows the average (solid curves) and the zone extending to one standard deviation around it
(shaded zones), for H measured as a function of F ? for � � � � � � (26 samples), ��� � � ��� (10
samples), and � � � � � � (7 samples). Fig. 2 does indicate a systematic decrease of the fluc-
tuation level (see inset), compatible with a regression as � � ;>=@?

, just like for an average over
a number of independent contributions (subsystems of representative size) proportional to � .
Series A samples respond in a quite similar way to deviator stresses as type B ones (although
of course, due to different initial states, " and � , constitutive laws will differ). There is a fast
increase in H , so sudden that it cannot be distinguished from the axis on fig. 2, followed by a
slower variation. H does not, in average, reach a maximum in the investigated F ? range. ‘Volu-
metric’ strains also vary similarly, with a different slope and an even shorter initial contraction
interval.

Role of parameters
-
, � , � .

The quasistatic stress-strain curve should be the same for SRC and SIC biaxial compres-
sions, independent on

-
and on � if it is small enough. To check this, five samples of series

FIG. 2. Hashed zone (the darker the larger � ) one r.m.s. deviation on each side of
average curve for the 3 sample sizes indicated (series A). Inset : its average width over
the � � interval, versus ���
	 � .
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B were submitted to SRC tests with � �A� � ��� and
- �A� , � �A� � ��� and

- �A� , �&�A� � ���
and

- � �
, and to SIC ones with �0H � � � � ? . Average curves for H versus F ? (fig. 3) and F �

versus F ? (fig. 4) for those 4 sets of simulations are displayed (and standard deviations levels
indicated as on fig. 2). Obviously, the value of

-
does not have any appreciable influence on the

rheological curve. Intergranular friction is the dominating dissipation mechanism, and it can be
checked that the differences between stresses evaluated with and without viscous forces differ
by negligible amounts for all SRC tests. However, results are affected by the reduced rate � ,
or the choice of an SIC procedure. A smaller � (according to its definition, this amounts to a
slower compression, lighter grains or higher pressures) results in smaller deviator and dilatancy
values for a given ‘axial’ strain. SIC tests, as one waits for equilibrium, are the slowest, and
SIC curves can be regarded as an extrapolation of SRC ones to � � �

. (The occurrence of
slightly decreasing H values in SIC tests might seem surprising, but is due to the use of real
Cauchy stresses to draw the curve, while stresses defined in terms of initial cell dimensions are
used in the calculations). The effects of the stiffness parameter � are illustrated on fig. 5. It
is most apparent in the initial rise of H , which is the faster for higher � , and the small-strain
contractant régime (see inset), which develops with softer contacts. For smaller � , the pack-
ing appears indeed to be softer. The curves at larger strains display no conspicuous difference
between �&� � � � and � � � � � , although the softest grains, � � � � � appear to withstand a
somewhat higher deviator stress. The dilatancy - slope of I F � versus F ? - is not affected. The
time scale for stress fluctuation during monotonous tests at a given strain rate is a strongly
decreasing function of � , hence the smoother curves on fig. 5 for softer contacts. The effects
of the parameters on rheological curves are related to some changes in the internal states of

FIG. 3. Average 
 versus � � for conditions indicated. Left inset: detail of one curve with
r.m.s. deviations, small � � . Right inset: averages and r.m.s. deviations for ��� ������� ,
�	� �
����� and SIC tests.
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FIG. 4. Same as fig. 3 for ��� vs. � � , standard deviations shown except for uppermost
( � � ������� ) curve.

� � �
��� ���

( � ? D ) � ? ( � D )

� � � � � ��� � � � � ��� � � � � � � � �
	 ��� � �
�
� � � � � ��� � � � � ��� � � � � � � �
	 ��� � � �
� � � � � ��� � � � � ��� � � � � � � � � � ��� � �
� ��� � � ��� � � � � ��� � � � � ��� ��� � �
�

TABLE 2. Simulation runs B, data for F ?�� � � � ?

the system undergoing compression. The effect of � is related to the greater distance to equi-
librium of systems under higher strain rate. Characteristic quantities are the average kinetic
energy per particle,

� �
(in units of � ? D ) and the quadratic average of the net force on a particle

(in units of � D ), � ? . Those quantities tend to slowly increase with F ? during the test, but typical
values for F ? � ��� � � can be cited. As for SIC tests, one only records equilibrium positions,
ensuring � ?  � � � � and

�
�  � � ��� . The coordination number � and the proportion of sliding
contacts

���
vary quickly before F ? � � � ��� and remain essentially constant afterwards (one has

� � � � � � , on average, for ��� � � � and � � � � ��� , � � � � � � for � ��� �
� and � � � ����� ). Tests
with the highest � values � � ��� are, logically, the farthest from equilibrium (

��� � � � � � � � � ,
and � ? � ��� � � , while

�
�
� � � � �
	 and � ? � ��� � � for � � � � ��� ). The change of � makes a

significantly larger difference from � � � to � � � than from � ��� to � � � . Unlike
���

and � ? , which
essentially depend on � , � and

���
are sensitive to both parameters. In SIC tests ( �&� � � � ),

� decreases from its initial value to about
� � � � (for F ? � ��� � � ) which is consistent with its

dependence on � in SRC conditions. Intermediate configurations of SIC tests, remarkably, do
not have any sliding contact: on approaching equilibrium, all contact forces leave the edge of

7



the Coulomb cone. Upon resuming an SRC motion, very small displacements can mobilize
friction and

� � � �
is observed (typically

���
� � �
� , if � � � � ��� and � � � �
� , � �

increases
with � and with � ).

DIFFERENT ORIGINS OF STRAIN
One striking aspect of the rheological curves is the existence of two different régimes. At

small F ? , close to the initial isotropic state, curves are quite smooth and reproducible, sample
to sample fluctuations are very small (figs. 1 and 3 ), SIC and SRC tests (whatever �  � ����� )
are in perfect agreement (figs. 3 and 4), and � strongly affects the results (fig. 5). Coordina-
tion numbers and friction mobilization change fast from initial values (table 1) to the roughly
constant ones given in table 2. At larger strains, the system is sensitive to the strain rate, much
more than to the stiffness parameter. Fluctuations are considerably larger, and the stepwise
increase of H , as one records the ensuing sequence of equilibria, results in a staircase-shaped H
versus F ? curve, as on fig. 6. H increments in those SIC simulations are very small, � H � � � ��� ,
so that nearly vertical segments on those plots correspond to many different equilibrium con-
figurations, each very close to the previous one. The slope of those steep parts of the curve
is close to that of the initial, stiff rise of H , confused with the axis on the main plot in the
figure, and visible in the blown-up inset. Large horizontal segments are due to motions be-
tween more distant configurations. The origin of those two different regimes is clarified once
it is attempted to find the system response to small load increments by purely static means.
Starting from an equilibrium configuration, it is possible to regard its contact structure as a
given network of elastoplastic elements, and determine the displacements leading to the new
equilibrium configuration, with a static method which is a discrete analog of elastoplastic finite
element calculations in continuum mechanics. Such methods are seldom used (see, however,

FIG. 5. Results for one B-sample with 3 different stiffness values, 
 (main plot) and � �
(inset) vs. � � .
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FIG. 6. Two SIC 
 vs. �
� curves. Inset : initial strictly quasistatic régime, blown-up �
scales. Results on one sample are identical with both methods.

(Kishino et al. 2001)) in granular systems because they are more complicated and less versa-
tile than the usual dynamical approaches: a stiffness matrix has to be rebuilt for each different
contact list, and calculations are limited to the range of stability of a given contact network.
As long as the contact structure is able to support the load, plastic strains in the sliding con-
tacts remain contained by elastic strains in the non-sliding ones, and the static method is able
to determine the sequence of configurations reached on, e.g., stepwise increasing H . This se-
quence is made of a continuous set of equilibrium states, and the system evolution is indeed
quasistatic : we refer to such case as the strictly quasistatic régime. We checked, for series A
samples, that static and dynamic calculations are in perfect agreement in such cases, as shown
on fig. 6. This initial régime is the stability range of the initial configuration. The strains are
then directly due to contact deformation – such strains will be termed of type I in the sequel
– and are inversely proportional to � , while results are not sensitive to � (the static method
ignores completely inertia and physical time). This range should not be regarded as an elastic
domain, as the non-linearity of the curves on fig. 6 (the elasticity of contacts is linear) is due to
contact losses and also to the gradual mobilization of friction. On reversing the H increments,
steeper slopes are observed. In the samples of fig. 6, the very steep parts of the staircase-shaped
curves also correspond, as we checked, to stability intervals of some intermediate equilibrium
configuration at higher H . Such intervals are separated by large strain steps, corresponding to
rearrangements of the contact structure. Those occur when the accumulation of sliding contacts
leads to an instability, and the ensuing motion is arrested by new contacts as interstices between
neighbouring grains are closed. The resulting strain increments are hereafter referred to as type
II strains. Their magnitude is related to the width of interstices between neighbouring grains.
The system evolution, in that rearrangement régime, is, as shown previously, more sensitive
to dynamical parameter � . Equilibrium states do not form a continuum in configuration space,
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FIG. 7. ‘Creep tests’, dots on main plot showing initial and final (equilibrium) states.
Effect of resuming compression SRC way shown as thick lines. Inset: creep tests within
strictly quasistatic range.

the system has to jump between two successive ones in a controlled deviator step test, or to
flow nearby in a controlled strain rate test. The evolution can only be termed quasistatic in a
wider sense if the statistical properties of trajectories in configuration space are independent,
for slow enough motions, on dynamical parameters – which can be reasonably expected from
the present study. The initial strictly quasi-static H� H ; interval does not shrink, but appears
rather to approach a finite limit (about H ; � ����� here) as the sample size increases. Stress-strain
curves depend on 
 � � 
 � within this range, but, interestingly, H ; does not (Combe 2001). In
the rearrangement régime, in order to approach a smooth curve in the macroscopic limit (see
fig. 2), it is necessary that the sizes of both the steep and the flat parts of the ‘staircases’ shrink
to zero as the sample size increases. Type I and type II strains have very different amplitudes
in A samples with � � � � � and �  � � � � . It might in fact be expected that this clearcut
distinction will get blurred at smaller � (whence larger type I strains) or larger � (smaller type
II strain increments can close contacts), and that the transition at H ; will be fuzzier as well.
Nevertheless, the system properties do strongly differ for H � H ; and H � H ; , in two important
respects. First, the slope of the stress-strain curve relates directly to the elasticity of the con-
tacts in the type I strain dominated, strictly quasistatic case. The tangent at the origin on fig. 6
(smaller plot) is the Young modulus of the packing. Second, the amplitude of fluctuations, the
distance to mechanical equilibrium, and the sensitivity to perturbations are much stronger in
the rearrangement (type II strain dominated) régime. This is further illustrated by the following
‘creep experiment’ : in a strain-rate controlled biaxial compression, at some arbitrary instant,
shift to stress-controlled conditions and keep H constant, until an equilibrium configuration is
reached. Typical results of such tests are shown on fig. 7. As could be expected, much larger
strain variations are observed during periods of creep in the rearrangement regime, as the initial
states are farther from equilibrium. One may also note that, on resuming the constant strain rate
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FIG. 8. Effect of repeated random load (
��� ����� ���	� 
 ����� � ) applied in states shown as

big dots on the stress-strain curve in the inset: increments of � � vs. increments of � � on
blown-up (by ����� ) scale. The response of state A is concentrated near the origin, only
the response of state B ( 
 � �
� ��� ) is visible on this scale. Dotted lines: SIC and SRC
dilatancy curves near point B, same sample.

test, the initial part of the curve is very steep, which is characteristic of a ‘strictly quasistatic’
interval. From an equilibrium state (devoid of sliding contacts), friction has to be mobilized
again to produce the instabilities of the rearrangement régime. The dilatancy within those creep
intervals is similar to the SRC one.

The ‘creep tests’ reveal different behaviours in the two deformation regimes in SRC tests.
One might also probe the sensitivity to perturbations of intermediate equilibrium states ob-
tained in SIC tests. We repeatedly applied on the grains constant external forces, each force
component being randomly chosen between I � � and � � ( � � is a small fraction of � D ). Such
random load increments always tend to produce strains in the same direction, as illustrated on
fig. 8. Applied when H � ��� � within the strictly quasistatic range, such perturbations entail very
small strain increments (hardly visible near the origin of the plot). Applied when H � ��� � � as
equilibrium states are much more unstable, they produce the series of strain increments plotted
as connected dots, which tend to accumulate proportionnally, hence the nearly straight line,
the slope of which is comparable to the dilatancy. The repeated application of small random
perturbations thus entails some ‘creep’ phenomenon.

LOCAL STRAINS AND DISPLACEMENTS
The spatial distribution and correlation of diplacements and strains or displacement gradi-

ents are more easily studied in samples with periodic boundary conditions, as they are devoid of
all boundary effects and each part of the sample plays the same role as the others. A quite thor-
ough study of “structured deformation” was carried out in (Kuhn 1999), to which the results

11



presented here should be compared.
Such studies of deformation patterns are complex, as delicate choices are necessary in order

to extract the relevant trends and features from very large data sets. Here a few typical results
are given, in order to

� check for possible differences between the two régimes of deformation� investigate internal length scales and sample representativity.

We studied displacement fluctuations between successive equilibrium states in series B
SIC simulations. We call displacement fluctuation the difference between displacement ��� of
particle + , at position � � and its value I F � � � in a perfectly homogeneous continuum undergoing
the same macroscopic strain F (in other words, the displacement fluctuation is the non-affine
part of the displacement field, subtracting the effect of the macroscopic strain). We shall write

����� ����� � F � ��� �
(Positive strains correspond to shrinking lengths).

Typical displacement fluctuations are shown on figs. 9 and 10 Both figures display qual-
itatively similar vortex patterns, although fluctuations are larger in the second case, which
corresponds to a larger deviator stress, within the rearrangement range, although no significant
rearrangement has occurred during the small motion represented on fig. 10.

The intensity of fluctuations, relative to the mean strain increment, can be expressed by the
relative variance of the displacement fluctuations:

� � ? �
	 � ���!� ?�� �

 ���� ; � �����<� ?
� � ? � F ? ; � F ?? � (1)

In eqn. 1, F�� refer to small strains defined using the first configuration (begining of motion) as
reference. � � ? , as defined by eqn. 1, typically grows with H , from � to

�
for H  ��� � to � � , � �

(occasionnally � � ) for H � � . In the rearrangement régime, successive states (i.e., equilibrium
states in a SIC simulation) can be separated by a relatively large (several times � � ��� , sometimes
of order � ��� ? ) strain interval. However, the aspect of the fluctuation field and the normalized
variance � � ? do not appear to be significantly correlated to the amplitude of the strain step.

One should be aware that displacement scales are considerably magnified on the figures
(as can be inferred from the variance value). The maximum displacement fluctuation (which
determines the length of the longest arrow on the figure) is

� �	��� � � � � on fig. 9 and � � � � � �����
on fig. 10 (in units of � , which is the typical distance beween the origins of two neighboring
arrows).

In order to obtain a quantity measuring the length scales (e.g., size of a circulation cell)
associated with the displacement fluctuation field, we have computed its correlation function,
a function of vector � , � � � � , defined as the average of scalar products ����� � ����� for all pairs of
particles whose centers (with the nearest image convention of the periodic boundary conditions)
are joined by � . More precisely, we measure the average of � � � � over a small part of the
plane, corresponding to intervals in the polar coordinates � � � � � and � ( � � �

in direction
� ). Exploiting the symmetry � � I � � ��� � � � , and assuming � � ����� I � � ��� � ����� � (which
is true on average in the biaxial compression) we obtain, for the data of figs. 9 and 10, the
correlation functions displayed on figs. 11 and 12. Although the angle-averaged correlation
function nearly vanishes for distance � � � ��� , non-negligible correlations persist near 45
degrees, and anticorrelations near the principal axes, till the maximum distance � � � . This
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complex angular structure therefore extends up to length scales comparable to the sample size
(samples are nearly square, with an edge size slightly larger than ����� ). This confirms the visual
impression given by figs. 9 and 10: displacement fields display heterogeneities involving length
scales comparable to the sample size. At small deviator (well within the strictly quasi-static
rgime), the amplitude of this long-range correlated field is not too large, and the response of
one sample will not widely differ from that of another. However, at larger H , the response of one
sample (in the SIC case) for one given � H , is sometimes a very small, and sometimes a quite
large strain increment. This can be related to the lack of “self-averaging” corresponding to the
long-range correlated field with large variance. Such correlation functions, in a much more
systematic statistical study, could possibly be averaged, fitted to a functional form, etc... but it
might be deemed preferable to investigate larger sample sizes first, to try to obtain “intrinsic”
correlations, independent on sample size and shape.

Another way to investigate the heterogeneity of deformation is to focus on the local dis-
placement gradient (Kuhn 1999) (our approach here was inspired by this article, to which the
reader should refer for more details). The idea is to define a tesselation of the planar sample,
each individual cell being attributed a constant value of the displacement gradient directly de-
duced from the displacements of nearby disk centers. Specifically, one may build the “radical”
(also called Dirichlet) tesselation, whose vertices are disks centers. It is an appropriate gener-
alization of the Voronoi tesselation, accounting for different disk diameters (each disk will be
entirely enclosed into its polygonal cell). Its dual tesselation (vertices becoming cell centers,
and cell centers, vertices) generalizes the Delaunay tesselation, the vertices are the disk centers
and the cells are local voids, surrounded by a ring of particles. Generically, they are all triangu-
lar, and the motion of three particle centers is just what is needed to define the four components
of a displacement gradient tensor. Unlike Kuhn, we keep using those triangles even though
some of their edges do not correspond to contacts. Only for disks that do not carry forces be-
fore or after the strain step do we average the local gradient between all concerned triangles, to
eliminate artificial concentration of local deformation. With this (summarized) procedure, one
can obtain a local displacement gradient field, and study its fluctuations, subtracting the macro-
scopic strain associated with the change in simulation cell dimensions. If � is the number of
void cells, labelled by + , if � � is the area of cell + , while � � 
 ��� is the total area, and if � �
denotes the displacement gradient fluctuation ( � � � matrix) in cell + , then one may define a
variance as (to be compared to 1, with the same meaning for F � )

� ? �

����� ; � �<� � � � � � ?
� � F ? ; � F ?? � (2)

(In eqn. 2, � � � � � ? is defined as the sum of the squares of all four coefficients of � � � matrix � .)
The value

� ?
is another indicator of the amplitude of heterogeneities. We found it to increase

from about � at small H and F ? to large values, erratically changing between a few tens and a
few hundreds, at larger deviator stress.

Figs. 13 shows the intensity of “right slip” deformations within the strain step correspond-
ing to fig. 10, defined as the amplitude of the projection of local gradients onto a slip defor-
mation on planes inclined (at 45 degrees) with respect to the � axis. Such banded structures
as those of fig. 13 are also present from the beginning of the biaxial compression, even though
they are less intense. It is tempting to regard them as precursors to shear localization bands.
However, localization was never reported at such small strains, so close to the initial, isotropic
stress state. One possible interpretation would be that the length scale associated with such
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“microbands” would be more clearly separated from the sample size with larger samples, so
that “microband” patterns would self-average. Once again, the limitation on the sample size
appears to entail serious interpretation difficulties.

COMPARISONS WITH EXPERIMENTS
In spite of the many differences between the numerical models and the materials studied in

the laboratory, such as sand, or even glass beads, some features of the simulation results can be
compared in a qualitative or semi-quantitative way to experimental ones.

First, parameters � and � should be used to obtain robust estimations of orders of magni-
tude. In 3 dimensions, � should be defined as 
 � � � � D � in the case of linear elasticity in the
contacts. � measures the normal elastic deflection in a contact, relatively to the grain diameter� , due to the typical contact force D � ? . In a Hertzian contact between spheres of diameter � ,
it is easy to show that � should be defined (up to a prefactor of order � ), as

��� � D � ? = � , where�
is the Young modulus of the grain material. This gives � � � � � � for glass beads under

D � � ��� Pa. (In 3D simulations, we could check that, given these definitions, the effect of � on
the coordination number was similar to the 2D case, see also (Makse et al. 2000)). ‘Real’ mate-
rials with Hertz contacts under D � � � � Pa are rather on the rigid side, but not quite in the rigid
limit. Other contact laws might lead to even smaller stiffness parameters (e.g., � � ��� � D � ;>=@?
if � ��� � 
 ?

, as for cone-shaped asperities).
An appropriate 3D definition of � is GF

� 2��� (
� 2��� is the time for a grain accelerated from

rest by the typical force � ? D to move on distance ����� ). Substituting typical values – a frac-
tion of millimetre for � , � � � �
	 � ; for GF – this yields � values as small as � ����� or � � ��� . As
calculations over F � � � strain intervals with �.��� ��� � still require several days of c.p.u.
time with 5000 stiff grains, real time scales of quasistatic laboratory tests are still beyond the
reach of discrete numerical simulations. The � dependence of numerical results can however
be extrapolated to smaller values.

Although it is tempting, in view of the results illustrated on fig. 7 to refer to creep ex-
periments (Matsushita et al. 1999; Di Benedetto and Tatsuoka 1997), as the aspects of the
stress-strain curves are quite similar in several respects, this difference of time scales precludes
a direct comparison. Moreover, the experimental H - F curves do not depend on strain rate if it
is constant (this corresponds to much smaller � values than simulations), and the creep defor-
mation is extremely slow, often logarithmic in time (Di Prisco and Imposimato 1997). Unlike
in the numerical case, it does not appear to stop as some equilibrium is reached. It might well
be relevant, however, to discuss such experiments in terms of the sensitivity of the system to
perturbations, which is likely to depend on whether contact networks resist load increments
(strictly quasistatic case) or are prone to instabilities (rearrangement régime). The numerical
tests discussed in connection with fig. 8 suggest a possible microscopic origin of such slow evo-
lutions over long times. Although aging and creep phenomena can also be expected at the level
of one contact, numerical simulations, in which such features are absent, might help assessing
the collective aspects of the response of the granular packing.

Our simulations can also be likened to experimental observations about the very small strain
elastic behaviour of granular systems (Di Benedetto et al. 1999). Recent developments of pre-
cision apparati enabled measurements of strains in the � � � � range. To obtain elastic moduli,
small stress cycles are superimposed on a constant loading, producing cyclic strains on top of a
systematic drift which, on increasing the number of cycles, gradually slows down and becomes
analogous to the one observed in creep tests. The average slope of a cycle on a stress-strain
plot, once the effect of the drift is negligible, can be interpreted as an elastic modulus (there
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remaining some small dissipation). Those small strain increment elastic constants agree with
the ones deduced from acoustic wave velocities. From our simulations, it transpires that the in-
cremental stress-strain dependence might express a genuinely elastic behaviour (supplemented
by some plastic dissipation which vanishes in the limit of small stress increments) in the strictly
quasistatic régime. Elastic moduli are then related to the stiffness of the contacts. The width
of strictly quasistatic strain intervals are of the order of H ; � � – H ; being their width in terms
of stress ratio. Taking into account that H ; is exceptionally large for the initial small-strain
régime if our extremely dense and well coordinated systems, and the value � � � � � � esti-
mated above for glass beads, one does obtain the right order of magnitude  .� � ��� for the very
small strain elastic domain. Moreover, the procedure by which these moduli are measured can
be interpreted as the preparation, either left to random perturbations or forced by cyclic load
increments, of a better stabilized state for which the contact network is able to resist small, but
finite stress increments (just like the stiffly responding equilibrium states of fig. 7).

CONCLUSIONS AND PERSPECTIVES
Despite their limitations (due to the simplicity of the contact model, and the inaccessibility

of long time scales), the numerical simulation results presented here enable some investiga-
tion of the microscopic origins of many features of experimentally observed behaviours. The
definition of reduced dimensionles parameters ( � and � ) provides a framework in which many
experimental and numerical studies can be discussed in common terms. Due to the small size
of numerical samples, constitutive laws have to be approached via statistical analyses. Investi-
gations on the microscopic aspects of deformations could certainly be pursued further, but they
are confronted with the difficulties due to the limited sample size. So far, they reveal that the
intensity of heterogeneities (in the displacements and deformation fields) increases with the de-
viator stress (or the distance to the initial, isotropic state), although such a trend seems difficult
to assess for the length scale associated with such heterogeneities, i.e., the correlation length.
A major issue is whether a finite length scale can be associated with the local displacement
gradient field, and how it depends on control parameters.

The distinction between two different origins of strain and two deformation régimes leads
to interpretations of very small strain (tangential) elasticity and slow deformation (creep) under
constant load, in terms of the system sensitivity to perturbations.

This work should be pursued in four directions. First, it is desirable to extend the existing
approach to more ‘realistic’ models, so that more quantitative comparisons with experiments
will be possible (3D studies on spheres – an obvious step in this direction – are under way).
Secondly, the importance of the initial state and of the sample preparation procedure calls for
systematic studies (unlike for quasistatic monotonous compression tests, experimental knowl-
edge is not expressed as well established laws for such processes). The joint use of dynamic and
static methods, which agree remarkably in strictly quasistatic domains (fig. 6) opens avenues to
explore fundamental issues, such as elastoplastic contact network stability and rearrangements,
in some microscopic detail. And, finally, simulations of larger samples (preferably with simple
2D models in a first stage) could better distinguish between the range of correlation of local
deformations and the sample size.
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FIG. 9. Displacement fluctuation field (affine part subtracted) between two successive
states, separated by � � � � � � ��� �
����� and � 
 � �
��� � , at 
 � �	� � on a SIC 
�� � � curve as on
fig. 3 ( � � �
� � ). The normalized displacement variance is �	� ��� .
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FIG. 10. Displacement fluctuation field (affine part subtracted) between two successive
states, separated by � � � ����� � � �
����� , at � � � �	� � � � on a SIC curve like on fig. 3. The
normalized displacement variance ��� � (eqn. 1) is ��� � 
 .
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FIG. 11. Correlation functions, normalized by initial value (variance), for different ori-
entations. Same data as fig. 9

FIG. 12. Correlation functions, normalized by initial value (variance), for different ori-
entations. Same data as fig. 10
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FIG. 13. Intensity of “right slip deformation” on planes inclined at 135 degrees from
the � direction, coded in gray levels. The“left slip deformation” on planes inclined at 45
degrees reveal a similar banded pattern in the directions symmetric with respect to the
vertical on the figure. In agreement with Kuhn we find that such slip modes account
together for about

� 
�� of the variance. Here � � , defined by eqn. 2 is equal to ��� �
� � .
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