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ABSTRACT: We present numerical simulations of biaxial tests on dense packings of nearly rigid grains. Homo-
geneous samples are prepared under hydrostatic pressure, and then submitted to a stepwise increasing deviator
stress. The use of both static and dynamical methods allows us to identify two different regimes according
to whether macroscopic strains result from the mere deformations of the contacts themselves, or are essen-
tially due to rearrangements of the packing. Some ensuing differences in terms of mechanical behaviour in the
macroscopic limit of large systems are discussed.

1 INTRODUCTION

Discrete numerical simulation has become a basic
tool for the study of microscopic origins of macro-
scopic mechanical behaviours of granular materi-
als (Behringer & Jenkins 1997; Herrmann et al. 1998;
Wolf & Grassberger 1997). Most often, one simply
solves the differential equations stemming from New-
ton’s law to compute the trajectories of collections
of particles submitted to given external forces. Those
numerical schemes, called molecular dynamics (DM)
or ‘distinct element methods’, thus rely on a dynam-
ical approach. Yet, dense granular assemblies sub-
mitted to slowly varying loads behave like solids,
and the incremental stress-strain relations of tradi-
tional soil mechanics models are independent of phys-
ical time (Wood 1990). Theoretical approaches to mi-
cromechanics of grain packs also tend to focus on
equilibrium situations. Moreover, they often deal with
a fixed contact structure, whereas, under strain, the list
of force-carrying contacts might change.

It is thus interesting to study in what sense the evo-
lution of granular systems can be regarded as quasi-
static, and in what situations macroscopic deforma-
tions imply rearrangements of the contact network.
The work briefly reported here addresses both prob-
lems, in the simple case of the biaxial compression
(Section 3) of the model granular systems presented
in Section 2. Two different regimes of deformation
are identified; possible consequences are discussed in
the final part (Section 4).

2 MODEL. SAMPLE PREPARATION.
Collections of n disks, the diameters of which being
uniformly distributed between 0:5 and 1 (the largest
diameter is chosen as the unit length), are randomly
generated and placed in a loose configuration within
a square box in two dimensions. After some amount
of mixing, using an energy-conserving algorithm to
move the grains, with random initial velocities, as
rigid impenetrable bodies in a fixed container, we pro-
ceed to an isotropic compaction of the sample. Two
of the walls (marked 1 and 2 on fig. 1) are then free
to move like pistons, constant principal stresses �1 =
F1=L2 = �2 = F2=L1 = p are imposed, with the no-
tations of fig. 1 and the convention that tensile stresses
are negative. In this compression step, disks are rigid
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Figure 1: Schematic representation of isotropic and
biaxial compressions of rectangular samples.

and devoid of friction, and an efficient energy dissi-
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Figure 2: Packing fraction � versus 1=
p
n, propor-

tional to the ratio of perimeter to surface area in sam-
ples of n disks (51 for n = 1024, 23 for n = 1936 10
for n = 3025, 18 for for n = 4900. Error bars extend
to one standard deviation on each side of the average.
The successful linear regression reflects the boundary
effect and yields the estimated n! +1 limit.

pation mechanism is introduced, until an equilibrium
state is reached. We resort to the ‘lubricated dynam-
ics’ method of refs. (Ouaguenouni & Roux 1997a;
Ouaguenouni & Roux 1997b). This procedure as-
sumes neighbouring grains to interact via a thin layer
of a viscous lubricant, and produces final states in
which both the equilibrium requirement (the net force
on each grain is smaller than 10�4 for p = 1) and
the impenetrability condition (interpenetration depth
smaller than 10�7 in each contact) are accurately en-
forced. In particular, the force-carrying structure is
then isostatic – a specific property of rigid friction-
less disks or spheres (Roux 2000). Such compressions
without friction produce dense homogeneous config-
urations. The packing fraction � associated with our
preparation procedure is estimated in the large system
limit (see Fig. 2) as 0:8437� 0:0012. Those configu-
rations are the starting points of the biaxial tests that
are studied in the sequel: denoting as L0

i
the value of

Li (i =1 or 2) under the initial isotropic state of stress,
one will stepwise increase stress deviator q by setting
�2 = F2=L

0

1
to p + q, while �1 = F1=L

0

2
stays con-

stant, equal to p. After each step �q one waits for
the next equilibrium state and then records strain pa-
rameters �i = ��Li=L

0

i
, or the relative area increase

�v = ��1 � �2. This is feasible as long as the ‘devi-
ator peak’ is not reached: attempts to impose larger
values of q, in such dense samples as ours, do not yet
result in unbounded deformation and flow for the q

domain investigated here. Most results given below
do not pertain to perfectly rigid disks, but to packings
in which the normal stiffness constant –assuming lin-
ear unilateral elasticity – is KN = 105p in all con-
tacts. Biaxial compression tests are studied here for
disks with Coulomb friction in the contacts (the ab-
sence of friction in isotropic compaction is a device
of the sample preparation procedure), the contact law

is therefore elastoplastic in the following, with a tan-
gential stiffness constant chosen as KT = KN=2.
For the initial state to be in equilibrium with such
characteristics and no mobilization of friction, one is
led to a small final compression step, without friction
(carried out by MD). Starting configurations are thus
slightly denser (the increase in � can be estimated
as �� = (2:76 � 0:28) � 10�5 as n ! 1), while
the degree of force indeterminacy (hyperstaticity) on
the force-carrying structure (which comprises all but
about 5:5% of the disks, the remaining ones being free
to rattle in the ‘cage’ between their neighbours) stays
smaller than 0:004n.

3 BIAXIAL TESTS

3.1 Strictly quasi-static regime.

As intergranular friction is introduced, the degree of
force indeterminacy at equilibrium (which vanishes
for rigid, frictionless grains) takes a large, extensive
(proportional to the number of degrees of freedom)
value. The initially existing network of contacts might
thus be expected to be able to sustain the load within
some finite q interval. In order to be able to solve for
the value of contact forces in this regime, one has,
in view of this hyperstaticity, to introduce more ma-
terial parameters than the sole friction coefficient �.
This is the essential reason why we had to deal with
some elasticity in the contacts: even though the elas-
tic part of the contact law might not be a physically
accurate model, it enables, via an elastoplastic calcu-
lation, to obtain the complete system evolution (dis-
placements, forces, status of the contacts) as long as
the load is supported by the initial contact network.
Such a computation, closely analogous to finite ele-
ment methods applied to elastoplastic problems, only
relies on static ingredients. We implemented the algo-
rithm of ref. (Nguyen 1977), also used by (Bourada-
Benyamina 1999) for discrete systems, within the ap-
proximation of small displacements, i.e., neglecting
geometrical changes (apart from opening of initially
closed contacts). This latter approximation is well jus-
tified in the limit of rigid grains KN=p ! 1. As
q increases, more and more contacts acquire a slid-
ing status (with contact forces on the edge of the
Coulomb cone), but the amplitude of the sliding is
limited by the rest of the structure: plastic deforma-
tions are contained until macroscopic failure occurs.
Displacements and strains, as functions of q, are thus,
for a given network geometry, inversely proportional
to KN , and only depend, as well as forces, on � and
KT=KN . Meanwhile, a certain number of contacts
open, especially among those that are oriented near
the direction of extension. Consequently, the degree
of force indeterminacy, assuming the status of con-
tacts is known, i.e. counting, as in (Lanier & Jean
2000), only one unknown force value in sliding con-
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Figure 3: q and �v , as functions of �2. (a): q versus �2 in two n = 3025 samples : those curves exhibit the typical
‘staircase’ aspects of the rearrangement regime. The inset compares, for one sample, the results of the static
(points) and the dynamic (continuous curves) methods, for q < q1. Note the blown-up � scale. (b): available DM
results for q(�2) are averaged at constant �2, the shaded area extending one standard sample to sample deviation
above and below the average. The darker region is for n = 3025, the lighter grey one for n = 1024. The inset
presents the same data, along with �v , in the strictly quasi-static region: note the smaller fluctuations.

tacts, zero in open contacts, continuously decrases,
from an initial value equal to the number n� of force-
carrying disks to less than n

�

=10 at failure.
Calculations with different system sizes show very

clearly that any value of q, however small, implies a
non-vanishing density of sliding contacts in the large
system limit: there is no purely elastic region in stress
space. However, the largest supported deviator q1

does possess a finite limit as n!1, which, from cal-
culations with 26 samples with n = 1024 and 26 sam-
ples with n = 3025, we estimate as q1 = 0:6 � 0:04
for � = 0:1, q1 = 0:73 � 0:04 for � = 0:25, and
q1 = 1:10 � 0:08 for � = 0:5. Interestingly, prelim-
inary checks suggest that q1, in each sample, is fairly
insensitive to KT=KN .

Typical results for �2(q), �v(q) curves for q < q1 are
shown on Fig. 3. Such evolutions are quite smooth, as
the response of the system to load increments is grad-
ual and devoid of instability. Each point of the sys-
tem trajectory in configuration space is an equilibrium
state for a certain value of q: the evolution is indeed
quasi-static.

Instead of those static computations, one can of
course resort to more often employed dynamic pro-
cedures, such as MD, introducing the necessary addi-
tional parameters (inertia, viscous dissipation). This
enables calculations beyond q1, when the initial con-
tact structure breaks apart. We carried out those sim-
ulations, with the same implementation of contact

laws as in (Cundall & Strack 1979), increasing q by
�q = 10�3

p steps, for 26 samples with n = 1024 and
another 26 with n = 3025, with � = 0:25, keeping
KN = 2KT = 105p, until �2 reached the value 0:02.
It is remarkable that the macroscopic response (�2(q),
�v(q)), sample by sample, is then undistinguishable
from the static method result, as long as q < q1

(see Fig. 3a). Moreover, provided the dynamic sim-
ulation is performed within the same small displace-
ment approximation as the static one, both methods
also appear to yield the same configuration at the mi-
croscopic level. This obviously calls for a theoretical
study of uniqueness properties.

3.2 Staircase regime.

With all samples, q values significantly larger than q1

are reached at �2 = 0:02. Beyond q1, new equilibrium
states corresponding to higher q’s have to involve new
contacts which did not belong to the previous list.
From the point of view of the initial contact network,
failure implies the occurrence of unbounded deforma-
tion (a certain combination of sliding and opening of
contacts that enables macroscopic motion). However,
this incipient flow is soon arrested as newly formed
contacts bring about new restrictions on the motion.
This leads to a new equilibrium state. The amplitude
of the motion from the former to the new configu-
ration is now related to the distribution of open in-
terstice thicknesses between neighbouring particles.
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Its origin is geometric, it is no longer dictated by the
contact law. As the system moves from one state to
the next, it is not in equilibrium, and the specific cho-
sen dynamics does matter. Its trajectory in configura-
tion space is no longer quasi-static in the traditional
sense, it consists in a (discrete) sequence of equilib-
ria, separated by rearrangements. Hence the staircase
aspect of the q-� curve, Fig. 3a. Successive equilibria
possess some interval of stability (corresponding to a
nearly vertical part of the curve) with a fixed contact
network, of a finite, yet small width: friction is still
mobilized in a large number of contacts, and the de-
gree of force indeterminacy remains small (as noted
in (Lanier & Jean 2000)). The jerky aspect of strain
variations and the large fluctuations in this rearrange-
ment or staircase regime slows down the approach to
any macroscopic limit. Whether the curve approaches
a smooth limit is related to the distribution of stabil-
ity intervals and of strain steps as a function of sys-
tem size. Interestingly, a detailed statistical study al-
lowed us to conclude that such a smooth curve – a
macroscopic constitutive law for monotonous loading
– does not exist for frictionless disks (Combe & Roux
2000). Here, the data collected with the two system
sizes n = 1024 and n = 3025 (see Fig. 3b) indi-
cate that a smooth limit can be expected, as the level
of fluctuation about the average q(�2) gets smaller for
the larger n. More detailed statistical investigations,
involving another value of n, could be carried out. It
would also be desirable to check for the influence of
dynamical parameters on the statistics of the stress-
strain evolution. If they can be shown to be irrelevant
(as in the frictionless case (Combe & Roux 2000))
then the system trajectory could be termed ‘quasi-
static’ in a broader sense, the relevant statistics being
dictated by equilibrium properties alone.

4 DISCUSSION

Our essential result here is the existence of those two
regimes, in which macroscopic strain is either due to
deformations of the contacts, or to rearrangements,
while the ‘deviator peak’ of the studied dense ma-
terial is still not reached at a 2% ‘axial’ strain level.
The possibility of doing calculations on a fixed con-
tact network in a well defined range q < q1 could be
exploited in investigations of slow, gradual evolutions
under cyclic loadings. From a fondamental point of
view, two basic phenomena should be studied in detail
at the microscopic level: the global failure of a net-
work of elastoplastic contacts, and, once it occurred,
the closing of intergranular interstices leading to pos-
sible new equilibrium configurations. These changes
in the list of contacts gradually alter the distribution
of contact orientations (Calvetti et al. 1997), presum-
ably enabling new configurations to sustain larger de-
viators.

The transition, at growing deviator stress, from the
strictly quasi-static to the staircase regime is reminis-
cent of the characteristic state of soil mechanics (Lu-
ong 1980; Tatsuoka & Ishihara 1974), at which the
structure of the granular pack is supposed to be mod-
ified by large scale sliding motions and to ‘disentan-
gle’. It will be interesting to explore further whether
some precise grain-level meaning can be attributed to
this classical macroscopic concept.
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