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Abstract This study focuses on highly compressible granular material incorporated 5

in novel tunnel-lining technology, precisely, the prefabricated tunnel segments 6

called voussoirs. The material composed of hollow, brittle, tube-shaped particles 7

were designed such that the crushing of the constituent particles results in high 8

material compressibility. This paper is essentially dedicated to discrete-element 9

simulations that involve both the breakage of the particles at micro scale and 10

the resulting effects on macro scale. Firstly, a 3D model was proposed in order 11

to adequately reflect the complex geometry and the breakage manner. In applied 12

strategy, the tube-shaped particle is modelled as a cluster of bonded, rigid, sphero- 13

polyhedral sectors. Then, the identification of the parameters that control the 14

mechanical response and the strength of the particles is presented using a radial 15

compression test. This step was supported by laboratory experimental tests. Finally, 16

six assemblies of cluster under oedometric loading were studied by means of 17

Discrete Element numerical simulations. We analysed the influence of the sample 18

size on the evolution of particles breakage and void ratios. This analysis resulted in 19

the definition of new framework for void ratio and a model capable of predicting 20

breakage as a function of the strains. 21
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1 Introduction 24

A number of studies shown that grain fragmentation plays an important role in 25

various processes like grinding (clinker grinding in cement industry [1], wheat 26

grinding [2]), powder compaction [3], civil engineering works (grain crushing in 27

pile installation and cyclic solicitation [4–6]), etc. The characterisation of grain 28

crushing is a fundamental step to understand the mechanics of such granular mate- 29

rials. The study presented in that paper is dedicated to mechanical characterisation 30

of a novel, specifically manufactured granular material which is characterised by a 31

double porosity and that is incorporated in technology of the tunnel lining [7]. 32

To prevent the high stresses on the tunnel lining triggered by the decompression 33

and creep of the hosted rock, an additional compressible granular layer is added 34

at the interface rock–lining, this is, at the extrados of the concrete segments. That 35

original compressible segment is called VMC (Voussoir Monobloc Compressible, 36

US Patent pending) and was jointly developed by CMC (a consulting company) 37

and Andra. The compressible layer between concrete lining and surrounding rock 38

spreads stresses by means of load transfer mechanisms [8]. When the stress 39

applied by the rock becomes locally very high, the granular material adapts by 40

large contact force rearrangements. To this end, the granular material must show 41

high compressibility abilities. Then, a novel manufactured granular material was 42

designed: it consists of crushable, tube-shaped particles made of backed clay (called 43

shells); Fig. 1a. This specific application takes advantage of a high internal porosity 44

of the shell. Therefore, the compressibility is tightly connected with grain crushing 45

presented herein. 46

The full mechanical behaviour of such new voussoir technologies needs to be 47

investigated aiming its improvement and optimisation. For that purpose, we first 48

focus on the study of the micro-mechanical behaviour of the granular layer made 49

of shells. Many laboratory tests were performed to explore the strength and the 50

strain capability of large assemblies of shells—oedometer and triaxial compression 51

tests [9]. Although the experimental campaigns have already provided valuable 52

data, the optimisation of the mechanical strength of this granular material needs 53

to be investigated at the inter-granular contact scale. The Discrete Element Method 54
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Fig. 1 (a) An intact shell (backed clay), (b) broken shell after an oedometeric compression, σa =
420 kPaAQ1
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(DEM) [10] was chosen as a numerical approach that enables the understanding of 55

the micro-mechanical behaviour of this specific material, at the grain scale. 56

Among all existing numerical strategies capable of modelling particle breakage, 57

two are frequently used. First strategy takes into consideration particles that are 58

replaced by smaller ones when the breakage occurs—that is, when a given limit 59

stress criterion is satisfied [11, 12]. In the second approach, the particle is generated 60

as a set of smaller particles connected together by means of bonding forces acting 61

up to a given yield strength criterion. As an example, [13, 14] modelled grains 62

of silica sand as an agglomerates of spheres that can be separated. Models based 63

on polygonal shapes have also been proposed by [11, 15]. Figure 1b presents the 64

manner of breakage for shells in an assembly subjected to oedometric compression. 65

It can be observed that shells are sliced in longitudinal parts following radial plans. 66

Hence, in this study, we will use bonded sphero-polyhedral shapes (polygonal 67

shapes made of tubes for edges, spheres for corners and plains). 68

In that paper, we firstly present our DEM model used to simulate the fracture 69

behaviour of a tube-shaped particle. A validation of the grain model is supported 70

by an experimental campaign presented in [16] and briefly recalled in that article. 71

Finally, we present results and analysis of six different samples under oedometric 72

loading focusing on the quantification of breakage and void–solid ratio defined in 73

standard and nonstandard frameworks. 74

2 Discrete Element Model 75

Discrete Element Method (DEM) is a particle-scale numerical method commonly 76

used to reflect the behaviour of granular materials [17–19]. It operates on the 77

Newton’s second law that is discretised in time and solved by means of a given 78

numerical integration scheme [20]. Newton’s equations require the knowledge of 79

the contact forces acting between rigid bodies. The commonly used concept relates 80

the contact force with local kinematic parameters (overlap, relative velocities, etc.) 81

between two particles. The trend between overlap and force is described by the force 82

laws, discussed in more details in this section. The model description is followed by 83

the identification and validation of model parameters. 84

2.1 Tube-Shaped Breakable Particles 85

Numerically, a cluster of 3D bonded sectors forms a tube-shaped particle as shown 86

in Fig. 2a. A sector is itself composed of sub-elements (spheres, tubes and thick 87

planes) with no relative movement; it can be considered as a rigid body. Within one 88

cluster, the sectors are bonded through four adjacent spheres; Fig. 2b. These bonds 89

act elastically in the two directions related to the opening of the common plane
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Fig. 2 (a) A tube-shaped particle modelled as a cluster of 12 sphero-polyhedral elements called
sectors. A sector is a rigid body composed of sub-elements of 3 types: 1⃝ spheres as corners, 2⃝
tubes as edges and 3⃝ thick planes as faces; (b) sectors glued with 4 bonded contact (black lines)
through 4 spheres
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Fig. 3 Force laws for bonded links (top row) and for cohesionless frictional contacts (bottom
row) respectively: (a)/(d) loading in mode-I/normal direction, (b)/(e) loading in mode-II/tangential
direction, and (c)/(f) failure/Coulomb criterion

(joined faces) as in fracture modes I and II. The elastic relation is written formally: 90

(
fI

fII

)
=

(
kI 0
0 kII

)
·
(

δI

δII

)
(2.1)

In a pure mode-I loading (tensile loading), the elastic force normal to the plane 91

cannot exceed a threshold force f ⋆
I ; Fig. 3a. For a pure mode-II loading (shear 92

loading), a tangential elastic force withstands if it is in the range of ±f ⋆
II ; Fig. 3b. 93
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When modes I and II are activated at once, a bond holds as long as a yield 94

function ϕ remains negative, with: 95

ϕ = −fI

f ⋆
I

+
( |fII |

f ⋆
II

)q

− 1, (2.2)

where q is a numerical parameter that controls the shape of the function, as 96

suggested by Delenne [21]. The yield function ϕ in the fI –fII plane is shown in 97

Fig. 3c for a given value of q. In this model, the mechanical behaviour of a cluster is 98

elastic and brittle, but the involved mechanical parameters (stiffnesses and threshold 99

forces) and the fracture pattern are related to the initial slicing of the cluster; Fig. 2. 100

As soon as ϕ ≥ 0 for one of the four bonds between two sectors, the four bonds 101

are broken. Not bonded contacts (never glued or broken bonds) are ruled by normal 102

and tangential laws. The normal contact force fn = kn δn is ruled by a linear and 103

elastic law, where kn is the normal stiffness of the contact and δn the normal distance 104

overlap in the contact. The tangential force ft results from an accumulation of 105

increments %ft = kt %Ut , where kt is a tangential stiffness and %Ut is the relative 106

tangential displacement in contact. ft is limited to ±µfn, where µ is the Coulomb 107

coefficient of friction. Notice that the frictional contact law is also used between the 108

clusters inside the assembly. 109

In DEM, energy dissipation is always a matter of concern [19]. Energy dissi- 110

pation can be managed through various mechanisms. The Coulomb friction is one 111

of the possible mechanisms. Additionally, we used two other dissipation model: 112

(1) a viscous damping that act in addition to normal elastic forces, and (2) a 113

numerical damping that affects artificially the resultant forces of the rigid bodies, 114

like in [17]. Both damping strategies are, in the context of quasistatic loadings, only 115

used to increase dissipation efficiency, especially when the clusters break (particles 116

breakage release a lot of energy that must be dampen for sake of numerical stability). 117

For all simulations presented here, we took advantage of the velocity Verlet [20] 118

numerical scheme implemented in a parallelised tool named Rockable, developed 119

by Vincent Richefeu from the GÉOMÉCANIQUE group of 3SR Lab. (Univ. Grenoble 120

Alpes, France). 121

2.2 Identification of the DEM Parameters 122

Our discrete model includes two sets of mechanical parameters: the first set for the 123

laws that bonds sectors of breakable clusters (kI , kII , f ⋆
I , f ⋆

II and q; Fig. 3a–c), and 124

the second one for laws ruling no cohesive–frictional contacts (kn, kt , µ; Fig. 3d–f). 125

◃ Bonded Sectors 126

As observed in Fig. 1b, the shells break into stick-shaped parts. As well, a radial 127

compression on a single shell produces stick-shaped parts at breakage when it 128

is performed experimentally at the laboratory. Such test (inset of Fig. 4a) allows 129
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Fig. 4 (a) Force–displacement curves of 83 radial compression tests. Inset: the loading condition
where the displacement δ is imposed at constant velocity δ̇ = 0.01 m/s; (b) shells subjected to
radial compression most often break in 4 parts sliced in the radial planes; (c) a simulation that
reflects a typical manner of shells breakage

to assess a rupture force F and a corresponding rupture displacement δ for the 130

shell. Hence, 83 tests were carried out on shells. Due to material and geometrical 131

imperfection, a strong variability was observed in the mechanical response, Fig. 4a. 132

In most cases, it was experimentally observed that the grains break into 4 parts 133

separated by the vertical and horizontal planes. 134

With our numerical model, the elasticity of the shell structure F/δ is controlled 135

by the elastic parameters of bonded links (kI , kII ) for which the order of magnitude 136

needs to be estimated (for a given number of sectors used to discretise the shell 137

shape). The parameters f ⋆
I and f ⋆

II , and the shape parameter q that control the 138

rupture force F for a given shell geometry, also need to be estimated. 139

The number of sectors used to discretise a shell needs to follow few requirements: 140

circular shape of the shell; ability to break in 4 parts for radial compression; the 141

smallest number of sectors as possible to shorten computation time. To fulfil these 142

requirements, we used 12 sectors per clusters; as shown in Fig. 2. 143

A number of simulations allowed us, by means of trials and errors, to select the 144

right stiffnesses k and yield forces f ⋆. The yielding force f ⋆
I , in fracture mode 145

I, leading to the experimental mean macroscopic force at rupture was found in 146

the order of 85 N. A statistical analysis of these forces clearly shows a Weibull 147

distribution [16]. The associated stiffness kI was set equal to 5.5 × 106 N/m in 148

order to target a mean experimental elastic slope. The force-displacement relation 149

modelled by DEM is shown in Fig. 4a (red line). The yielding force f ⋆
II , in fracture 150

mode II, has no influence on the force F at shell rupture. We thus selected the non- 151

definitive value of 50 N on the basis of an analysis of its influence on the mechanical 152

response of the shell. kII was set equal to kI . 153

Finally, the parameters q in the yield equation (Eq. (2.2)) was arbitrarily set to 2 154

(increasing this value made no marked changes). 155
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◃ Cohesionless Frictional Contacts 156

As seen in Sect. 2.1, particles interact with each other through their contact points. 157

At each contact point, a normal elastic compressive force and an incremental 158

tangential force (with a Coulomb threshold) are computed. Both contact laws need 159

stiffnesses, kn and kt , that are found to be the same in the literature [10]. The normal 160

stiffness kn was estimated using the Young modulus E of backed clay (for brick, 161

E = 14 GPa). Assuming that the Poisson coefficient of backed clay is ν = 0.3, it 162

can be shown that the dimensionless stiffness parameter of a dense sample of shells 163

submitted to a mean stress of P = 1 MPa is κ ≃ 400 [10]. Assuming an elastic 164

normal contact law, κ = kn/(aP ), where a is the mean size of the particles (0.02 m). 165

This estimation leads to kn = 8×106 N/m, which is observed to be of the same order 166

as the value obtained for kI . Thus, for the sake of simplicity, we arbitrarily used a 167

uniform stiffness coefficient: kn = kt = kI = kII = 5.5 × 106 N/m. 168

Other experimental tests enable us to assess a friction coefficient between two 169

curved lateral surfaces of the grains: 0.24 ± 0.06. 170

3 Oedometer Tests 171

Using a particle model that reliably reflects its mechanical response and breakage at 172

the grain scale, we enlarged the scale of interest to investigate mechanical behaviour 173

of an assembly of the crushable clusters. A number of samples was prepared varying 174

mechanical parameters in order to reproduce real sample; Sect. 3.1. An oedometer 175

(uniaxial compression) test is commonly used to study compressible properties of 176

the materials in geo-mechanics, therefore, Discrete Element simulations of this test 177

were performed for this novel granular material; Sect. 3.2. The material (backed 178

clay) does not show significant compressible properties itself, but tube-shape 179

geometry of the particles provides a high compressibility to the assembly thanks 180

to the particle collapse at breakage. Hence, by analysing mechanical behaviour of 181

samples a special attention is paid to the evolutions of void ratio and breakage rate 182

during oedometric compression; Sect. 3.3. 183

3.1 Sample Preparation 184

The sample was built by depositing under gravity the clusters into a cylindrical box. 185

The number density n (number of clusters per unit volume) was chosen as reference 186

parameters to be compared with an experimental measurement. Note that during 187

that procedure f ⋆
I,II were increased such that clusters cannot break. The procedure 188

consists of two steps: gravity deposit and numerical relaxation phase. A number 189

of clusters were distributed on the cylindrical grid such that there was no possible 190

interaction between them. The orientation of clusters was random. Then, the gravity 191

accountable for the vertical movement was activated. Simultaneously, the assembly 192
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Fig. 5 Trend (solid line)
between number density n
and friction coefficient µ
between clusters. The points
are the mean values with
corresponding standard
deviation showing the
variability of five different
simulations for each value of
µ used
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was shaken by means of an initial velocity assigned separately to each cluster with 193

random direction but constant magnitude of 1 m/s. Once all clusters embed on the 194

bottom of the mould, the sample rested until the equilibrium state was reached, 195

which was verified in terms of low kinetic energy. Numerically, the number density 196

n can be controlled by varying the coefficient of friction acting between the clusters. 197

Figure 5 shows the obtained trend that describes n as a function of intergranular 198

friction coefficient for a sample made of 333 clusters. For friction µ ≃ 0.08, 199

the number density n reached the experimental one (n = 157 840 clusters/m3); 200

therefore, it was used for sample preparation. 201

3.2 Oedometric Compression Test Procedure 202

The oedometer tests were performed with an imposed velocity of the upper plate, 203

v = 0.05 m/s. To insure quasi-static evolution of a granular assembly during its 204

compression, the inertial number criterion [10] was considered. It has been shown 205

that I < 10−3 the mechanical behaviour of the granular assembly is stain-rate 206

independent [22]. In this study, v was chosen such that I was of the order of 10−4. 207

Whereas the intergranular friction coefficient µ was set to 0.08 in the sample 208

deposit phase in order to obtain the right density, it was switched to its nominal 209

value µ = 0.30 for the oedometric compression. 210

3.3 Results 211

DEM simulations of oedometric tests were performed for samples with different 212

sizes, varying either the diameter or the height of the sample. Six samples of 213

different sizes (referred to as their sizes: diameter D× height h0) were tested; 214

the number of clusters ranged from 203 to 1926. In Table 1, one can observe that 215



UNCORRECTED
PROOF

Discrete Element Modelling of Crushable Tube-Shaped Grains

Table 1 Initial state of samples described by the diameter of sample D, the height of sample h0,
the number density n, and the void ratios e and e⋆; Eq. (3.2)

t3.1No. No. shells/no. sectors D × h0 (cm) n (clusters/m3) e⋆ e

t3.21 1926/23,112 35 × 12.2 164,139 0.579 2.423
t3.32 1579/18,948 35 × 10.1 162,717 0.593 2.453
t3.43 1105/13,260 35 × 07.3 156,479 0.656 2.591
t3.54 790/9480 35 × 05.1 160,965 0.610 2.490
t3.65 1047/12,564 25 × 13.1 163,068 0.589 2.445
t3.76 203/2436 11 × 13.5 158,800 0.632 2.538

Fig. 6 Sample made of 1926 cluster, that is, 23,112 sectors or 600,912 sub-elements: (a) before
oedometric compression—all grains are intact, (b) the end of test for εa = 60% and σa =
18.17 MPa—all grains are crushed

0
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0 10 20 30 40 50 60

σ
a 

(M
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)

εa (%)

sample 35 × 13
sample 25 × 13
sample 11 × 13
sample 35 × 10
sample 35 × 7
sample 35 × 5

Fig. 7 Mechanical response for oedometric loading. Comparison between cylindrical samples
with various sizes D × h0 (cm)

although all the samples were prepared with the same protocol, their density number 216

depends on their sizes. This observation can be related to a very common rigid 217

boundary effect [10]. 218

In Fig. 6 one can see an example of a sample before (Fig. 6a) and after (Fig. 6b) an 219

oedometric compression. Figure 7 shows the stress–strain relationship with different 220
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Fig. 8 Evolution of damage
defined as the rate of broken
bonds for cylindrical samples
with various sizes D × h0
(cm)
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sample sizes, by using the Hencky definition of the vertical strain εa = log(h/h0). 221

It is remarkable to observe that, as reported in the experiments [9], the stress-strain 222

curve does not show any significant dependence on the number of clusters neither 223

on the diameter–high ratio. 224

One of the advantages of DEM is that quantities can be assessed at the 225

grain scale; it means that grain breakage can accurately be followed during the 226

compression test. Figure 8 reports the proportion of broken clusters Nbroken/N with 227

respect to the vertical strain. After an initial transient regime, one can observe that 228

for εa ∈ [15% 40%], the breakage is independent of the sample size and it rises at 229

a constant rate of 2 (percentage of newly broken clusters per percentage of vertical 230

strain). Once all the initial bonds are broken, εa ≥ 50%, the sample becomes dense 231

and the loading starts to increase rapidly; Fig. 7. 232

The compressibility of the samples derives from the large amount of free space, 233

i.e., internal cluster voids. Due to its specific shape (Fig. 2), each cluster presents 234

an internal void that represent 51% of the total volume of a cluster. Considering the 235

volume of the sample Vtot and the volume of the solid phase Vs (sum of the volume 236

of sectors), the classical definition of void ratio 237

e = (Vtot − Vs)/Vs (3.1)

leads to high values: e ∈ [2.423; 2.591]. The peculiar geometry of a cluster disables 238

access to the space trapped inside it while it remains intact. Once the cluster is 239

broken the trapped space is released. Thus, we considered another definition for the 240

void ratio, where Vaccessible are all the available space in the sample and Vinaccessible 241

is the space that cannot be filled by matter because of geometric exclusions (inside 242

intact clusters). In that way, the geometric exclusions are accounted for: 243

e⋆ = Vaccessible

Vinaccessible
= Vtot − (Vs + V ⋆)

Vs + V ⋆
(3.2)
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Fig. 9 Void ratios’ evolution
with respect to axial strain.
Comparison between
cylindrical samples with
various sizes (D cm×h0 cm),
where e⋆ is defined by
modified criterion; Eq. (3.2)
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Fig. 10 Evolution of void
ratios e and e⋆ (Eq. (3.2))
with respect to axial stress for
six cylindrical samples with
various sizes D × h0 (cm)
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where V ⋆ is the volume of the hollow part of intact clusters. In Figs. 10 and 9, 244

the evolution of both standard (e) and non-standard (e⋆) void ratios are plotted 245

as a function of axial stress and strain. The standard void ratio e decreases non- 246

linearly, simply due to the logarithm definition of strain, Fig. 9. Solid lines present 247

non-standard void ratio e⋆ which, in all cases, rises up to e in non-monotonous 248

manner. This follows from the fact that the progressive cluster breakage enables 249

access to internal voids along the test. Once all the clusters are crushed, V ⋆ = 0 250

and thus, Eqs. (3.1) and (3.2) become identical. The evolution of e⋆ shown in 251

Fig. 10 is something different from the consolidation curves classically produced 252

for fine soils in the field of geotechnical engineering. Despite similar features, the 253

seeming consolidation slope (that increases with the stress level) relates mainly to 254

different mechanisms related to the collapse of constituent particles. A constitutive 255

macroscopic model dedicated to this mechanism should not be based on e directly 256

but rather on a modified version of this variable, as we suggested by introducing e⋆. 257

The derivation of such constitutive model is, however, not our final objective in this 258

study. 259

Let’s now see how the e⋆–εa plot may include the cluster breaking rate 260

d = Nbroken/N by considering it proportional to the axial strain as a first order 261

estimation: d = 2εa . By defining the cluster void ratio E0 = R2
int/(R

2
ext − R2

int), 262
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Fig. 11 Evolution of
normalised void ratios e/e0
(solid lines) and e⋆/e0
(dashed lines) with respect to
axial strain: (green)
simulation with the 11 × 13
sample, (black) compression
curves according to Eq. (3.3),
(red) a prediction for shells
with smaller holes and
d = 2.5εa , and (blue) a
prediction for shells with
larger holes and d = 1.5εa
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Eq. (3.2) can be re-written as follows: 263

e⋆(d) = e(εa) − (1 − d)E0

1 + (1 − d)E0
where e(εa) = 1 + e0

exp(εa)
− 1 (3.3)

Note that the logarithmic strain definition is used in the derivation of this formula, 264

and the relation between e and εa needs to include the initial void ratio e0 of the 265

sample. Figure 11 shows e/e0 as a function of εa superimposed on the result of 266

a simulation. Because the relation between e and εa is purely geometric, the e- 267

curves fit perfectly (the green curve has been slightly shifted to be evidenced). The 268

evolution of predicted e⋆ follows quite well the simulated one showing that the 269

geometric model is actually monitored by the evolution of d with respect to εa . It is 270

interesting to note that, in the context of crushable particles that are able to “release” 271

voids, e can be seen as an upper limit for e⋆(d = 1), while the natural definition of 272

void ratio when some voids are enclosed within the particles should be e⋆(d = 0). 273

One example of the interest of Eq. (3.3) can be illustrated by attempting to predict 274

the oedometric compression behaviour as a function of the hole radius of the shells 275

in order to optimise them. Assuming a faster increase of d for smaller hole radii, the 276

tendencies are shown in Fig. 11 (red and blue curves). Obviously, the reliability of 277

these predictions is questionable because the model still needs to include a proper 278

evolution law for the damage-like parameter d as a function of the pressure for 279

instance. 280

4 Conclusions 281

A complex DEM model was proposed to simulate the compression of crushable 282

tube-shaped grains. The specific geometry was successfully represented by clusters 283

of 3D bonded sectors modelled with sphero-polyhedron. It allowed the particles to 284

behave elastically up to their brittle rupture into smaller parts. Both an experimental 285
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campaign on tube-shaped grains (shells) and the numerical trials enabled us to 286

identify the mechanical parameters required for correct reflection of elastic and 287

brittle fracture of a single grain. 288

At macro-scale, oedometer test compressions were conducted numerically for 289

cylindrical samples of various sizes. These simulations demonstrated the model 290

ability to capture the collapse mechanisms at the particle scale. Negligible influence 291

of sample’s size and related boundary effects was observed on the mechanical 292

response. The void ratio was redefined in the context of voids that can be temporarily 293

inaccessible, before the particle collapse. In each test, the evolution of some data, 294

known as difficult to assess in experiments, has been reported. In particular, the rate 295

of breakage and the void ratios have been shown to evolve non-linearly in the course 296

of straining. An analytical model able to describe the evolution of the void ratio 297

e⋆ with respect to the vertical strain under an oedometric condition was proposed. 298

This model open interesting perspectives to predict the volumetric behaviour when 299

the cluster thickness is changed. A step forward will be to enhance this model to 300

predict the stress behaviour with respect to the vertical strain, taking into account 301

the compression resistance of one single shell. In the future, one objective is to use 302

this numerical model to improve some material parameters (e.g., shell sizes, cement 303

strength between the shells) such that the coupling of compressibility and strength 304

are optimised for the prevention of tunnel convergence. 305
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