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Abstract Continuum media from classical mechanics cannot appropriately repro-
duce the evolution of materials exhibiting strong heterogeneities in the strain field,
e.g. strain localization. Models without a microscale representation cannot properly
reproduce the microscale mechanisms that trigger the strain localization, in addition,
first gradient relations don’t present any length parameter in the formulation. This
results in a model without a characteristic length that cannot exhibit any objective
band width. In this paper, techniques to introduce an internal length will be enu-
merated. Microstuctured materials will be retained and in particular Second Gradi-
ent model will be exposed and used along with a FEMxDEM approach. Numerical
results showing the abilities of the enriched model will conclude the text.

1 Introduction

The idea of FEM×DEM is to solve a continuum boundary value problem (BVP)
at the macroscale while obtaining the constitutive material behaviour from a DEM
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microscale in a fully coupled hierarchical multiscale method. Some early works
[11, 16, 20], have put in evidence the potential of the method to provide a refined
description of complex constitutive behaviors. Indeed, FEM×DEM methods allow
to couple the advantages of Discrete Elements and the efficiency of Finite Elements.
Later works have enhanced and extended this approach to the study of anisotropy
[7, 18], granular cohesion [19], material heterogeneity [25], real scale engineering
applications [8, 18], more realistic constitutive behaviors using 3D DEM [12, 26],
macroscale hydro-mechanical coupling [10, 26]. More recently, [12] have embedded
non-local regularization at the macro-scale and [9] has developed a full micro-macro
3D approach.

It is known that for a strain softening material the initiation of strain localiza-
tion can lead to an ill-posed Partial Differential Equation (PDE) problem [23]. The
consequence of this ill posedness are numerical instabilities and strain mesh depen-
dency [22]. Regularization techniques have been developed to overcome these prob-
lem; both nonlocal [5] and local [6, 17] approaches exist. An example of nonlocal
regularization in a FEM×DEMmodel is presented in [12]. Local formulations use a
local relationship between stress and strains in the samemanner as classical constitu-
tive relations are defined. Second gradient model, as a particular case of the Germain
theory [6] has been developed [1, 4, 14, 21]. It has been extensively applied in geo-
mechanics and engineering applications with satisfactory results [3, 13, 24].

Previous developments of FEM×DEM could not take advantage of Second Gra-
dient regularization due to the poor solution stability and limited available mesh
refinement. Recent improvements concerning stability and computational efficiency
allow to build a FEM×DEM model including local Second Gradient. This results in
an objective model capable of simulating real scale problems with any mesh refine-
ment.

2 Introduction of an Internal Length

Models using a first-order constitutive relation of classical mechanical continuum
cannot properly predict the behaviour of a medium with high strain gradients. Those
approaches suffer from non-objectivity due tomesh dependency in localization prob-
lems.

Possible causes: the first-order constitutive relation does not give any information
about the internal length of the model; due to that, the localization band thickness
will tend to shrink to a size proportional to the mesh size. In this way, if the mesh is
refined making the size of elements tend to zero in order to get an exact solution, the
strain will concentrate in a null size band posing obvious problems.

It’s needed to set a relationship between the micro-scale heterogeneity and the
macro-scale characteristic length in order to establish a proper micro-scale size effect
on themacro-scale. An enrichedmodel withmicrostructure is proposed: local second
gradient model [1, 4, 14, 21].



Restoring Mesh Independency in FEM-DEM Multi-scale Modelling . . . 455

Fig. 1 Computational homogenization scheme with Second Gradient

3 Local Second Gradient Model

Microstructured material descriptions consider a continuum field in the micro-scale
enriched by higher order terms [6]. In this way, the kinematics of the media is
enriched by its micro-scale introducing a local dependence on an internal length
parameter. This characteristic length [1] regularizes the solution making strain local-
ization mesh independent. A local formulation complies with the principle of local
action so it states a stress-strain relationship in the same manner as a classical con-
stitutive laws do, this makes the implementation of local regularization in classical
models a straight forward procedure (Fig. 1).

We present the weak form of the balance equations written for the strain gradient
theory viewed as a particular case of the microstructured continuum theory [2]:

∫Ωt
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e = 0 (1)

where, superscripts t and ⋆ denote, quantities at a given time t and virtual quantities,
!t
ij is the Cauchy stress tensor, Σt

ijk is the corresponding double stress tensor, u⋆i is a
kinematically admissible virtual displacement feld, xti are the current coordinates ofthe points of the studied body and P⋆

e is the external virtual work generated by the
corresponding external forces [15].

4 Numerical Simulations

A compression biaxial test with second gradient enrichment shows how the regular-
ization turns the shear band patterns independent from the mesh size (Fig. 2). This
regularization not only enriches the physics of the model but also accelerates the
simulation because of an improvement of the iterative efficiency, i.e. a regularized
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Fig. 2 Biaxial compression test boundary condition. Results with different mesh size: 128, 512
and 2048 elements. Band width independent of mesh size

problem has less possible solutions meaning that the Newton scheme will converge
faster.

5 Conclusion

A second gradient regularization has been presented. First gradient mechanical mod-
els do not present any internal length, this poses some issues as the problem under-
goes softening and strain localization, i.e. mesh dependency. Second gradient is used
to provide the model with an internal length and to regularize the problem.

Second gradient is a microstructured local model, this means that the relation can
be applied in a material point in the same fashion as a classical constitutive law is.
The regularization is of special interest in the FEM×DEM model; because of the
noisy behaviour of the DEM constitutive law the problem is very likely to lose its
ellipticity leading to an ill posed problem. The second gradient allows to soften the
loss of ellipticity not only regularizing the problem but also allowing for a faster
convergence.

Results are presented, Compression biaxial test simulations with a second gradi-
ent enrichment show that the regularization sets an internal length which makes the
model mesh independent as far as the mesh size is fine enough.
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