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Abstract. To describe statistical properties of complicated restructuring of the force network under isotropic

compression, we measure the conditional probability distributions (CPDs) of changes of overlaps and gaps be-

tween neighboring particles by experiments and numerical simulations. We find that the CPDs obtained from

experiments on a 2D granular material exhibit non-Gaussian behavior, which indicates strong correlations be-

tween the configurations of overlaps and gaps before and after deformation. We also observe the non-Gaussian

CPDs by molecular dynamics simulations of frictional disks in two dimensions. In addition, the numerically

calculated CPDs are well described by q-Gaussian distribution functions, where the q-indices agree well with

those from experiments.

1 Introduction

The mechanics of granular materials has been widely in-

vestigated because of their importance in industry and sci-

ence. However, mechanical properties of jammed granular

materials are still not fully understood due to the disor-

dered configurations of the constituent particles [1]. At

the microscopic scale, the mechanical response to quasi-

static deformations manifests as changes of the contact

and force network [2], where complicated rearrangements

of the constituents cause irreversible restructuring. This

evolution under quasi-static deformation is described by

the change of the probability distribution function (PDF)

of these forces, where many theoretical studies [3, 4] have

been devoted to determine their functional forms observed

in experiments [5] and numerical simulations [6]. Macro-

scopic quantities are then defined as statistical averages

over the contact forces.

Recently, we have proposed a stochastic approach to

the irreversible restructuring of the force network in bidis-

perse frictionless [7] and polydisperse frictional [8] parti-

cles, where the change of the PDF of both forces and in-

terparticle "gaps" was predicted by a master equation. The

master equation encompassed the mechanical response to

compression (or decompression), where transition rates,

or conditional probability distributions (CPDs), fully de-

termine the statistics of the micromechanic evolution of

jammed granular materials.
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In this paper, we measure the CPDs for the master

equation by experiments on wooden cylinders [9] and

compare our experimental results with those of numerical

simulations.

2 Theoretical background

2.1 Microscopic responses of overlaps

When granular materials are deformed, the force network

is restructured because of complicated rearrangements of

the constituent particles (i.e., non-affine deformation), see

Fig. 1. To detect this restructuring of the contact and force

network (including opening and closing contacts), we in-

troduce the Delaunay triangulation (DT) (Fig. 2), where

not only the particles in contact, but also the nearest neigh-

bors without contact, i.e., virtual contact, are connected

by Delaunay edges. Then, we define a generalized overlap

between the particles, i and j, as

xi j ≡ Ri + Rj − Di j , (1)

where Ri (Rj) and Di j represent the radius of i-th ( j-th) par-

ticle and the length of the Delaunay edge connecting the

particles, i and j, respectively. Note that the generalized

overlap is positive if the particles are in contact, while it

becomes negative if the particles are not in contact (here-

inafter, virtual contact), see Fig. 1.

The affine response of generalized overlap to isotropic

compression is given, at first order, by xaffine
i j = xi j +

(Di jδφ/2φ), where the area fraction of constituent parti-

cles increases from φ to φ+ δφ with the (small) increment,
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Figure 1: (Colour online) Schematic pictures of jammed

packings (a) before and (b) after quasi-static deformation,

where the red and blue solid lines represent contact sta-

tus (red for grains in contact, blue for virtual contacts).

The four kinds of transitions, (CC) contact-to-contact,

(VV) virtual-to-virtual, (CV) contact-to-virtual, and (VC)

virtual-to-contact, are displayed.

δφ. In granular materials, however, constituent particles

are randomly arranged and force balance is violated by

compression. Then, the particles exhibit a deviation from

affine behaviour and complicated rearrangements such that

the force balance is restated. The system relaxes to an-

other mechanical equilibrium and the generalized over-

lap changes to a new value, x′i j � xaffine
i j , that is the non-

affine response of the generalized overlaps. As shown in

Fig. 1, there are only four kinds of transitions from xi j to

x′i j: both overlaps are positive (xi j, x′i j > 0) or negative

(xi j, x′i j < 0), if they do not change sign and thus (virtual)

contacts are neither generated nor broken. We call these

transitions contact-to-contact (CC) and virtual-to-virtual
(VV), respectively. On the other hand, positive overlaps

can change to negative (xi j > 0 and x′i j < 0) and negative

ones can become positive (xi j < 0 and x′i j > 0), where ex-

isting contacts are broken and new contacts are generated,

respectively. We call these transitions contact-to-virtual
(CV) and virtual-to-contact (VC), corresponding to open-
ing and closing contacts, respectively.

In the following, we scale the generalized overlaps by

the averaged overlap before compression, x̄, and introduce

the scaled overlaps before deformation and after relaxation

as ξ ≡ xi j/x̄ and ξ′ ≡ x′i j/x̄, respectively, where we omit

the subscript, i j, after the scaling.

2.2 A master equation for the PDFs of overlaps

The restructuring of the force network attributed to the

transitions (CC, VV, CV, and VC) is encompassed by the

evolution of the PDF of scaled overlaps, Pφ(ξ), where

the subscript, φ, indicates the area fraction of the sys-

tem. The PDF changes to Pφ+δφ(ξ′) under quasi-static

isotropic compression 1. However, it is difficult to pre-

dict the change from Pφ(ξ) to Pφ+δφ(ξ′) because the change

from ξ to ξ′ is stochastic rather than deterministic.

1The total number of Delaunay edges is conserved and the PDF is

normalized as
∫ ∞
−∞ Pφ(ξ)dξ =

∫ ∞
−∞ Pφ+δφ(ξ)dξ = 1.

To describe this stochastic evolution of the force

network (or the DT), we connect the PDF after relax-

ation to that before compression through the Chapman-
Kolmogorov equation [10],

Pφ+δφ(ξ′) =
∫ ∞
−∞

W(ξ′|ξ)Pφ(ξ)dξ , (2)

where the transition from ξ to ξ′ is assumed to be a Markov
process. On the right-hand-side of Eq. (2), the CPD of

scaled overlaps has been introduced as W(ξ′|ξ) 2. Then, a

master equation for the infinitesimal evolution of the PDF

can be derived from Eq. (2) as [10]:

∂

∂φ
Pφ(ξ′) =

∫ ∞
−∞

[
T (ξ′|ξ)Pφ(ξ) − T (ξ|ξ′)Pφ(ξ′)

]
dξ , (3)

where T (ξ′|ξ) = limδφ→0 W(ξ′|ξ)/δφ has been introduced

as the transition rate. The first and second terms on the

right-hand-side of Eq. (3) represent the gain and loss of

overlaps after deformation, ξ′, respectively. Therefore, the

transition rates or the CPDs describe the statistical prop-

erties of the micromechanic restructuring of the force net-

work.

3 Experimental apparatus

In order to experimentally validate the stochastic approach

presented in Sec. 2, we performed isotropic compression

tests with the "1γ2ε" apparatus described in [9, 11]. To

reproduce the behaviour of a granular assembly in 2D,

Schneebeli rods (i.e., 6 cm long cylindrical rollers) were

used. The assembly, consisting of around 1850 rollers, is

polydisperse (diameters from 8 to 20 mm). It is enclosed

by a rectangular frame, see Fig. 2. Wooden rods (ash

wood) were employed in order to take advantage of their

quasi-elastic behaviour within the stress range applied (up

to 250 kPa) at the boundaries of the sample.

The grain kinematics are assessed by applying Digital

Image Correlation (DIC) on a set of 80 Mpixel digital im-

ages. In particular, the technique applied, called Particle

Image Tracking, is an optimisation of DIC for the case of

discrete materials, for which grain motion can be erratic

[9, 12].

Assuming grains as 2D circles, contact deformation is

modelled through the definition of a particle overlap, as in

DEM, which is computed after detection of particle posi-

tions, following the definition in Eq. (1).

4 Numerical simulations

To model our experiments by numerical calculations, we

employ molecular dynamics (MD) simulations of disks.

The number of disks and the size-distribution are resem-

bling those in our experiments, as well as the stiffness level

κ, which allows us to assume that the same level of contact

deformation is attained in the two cases.

The normal force between the particles in contact is

modeled by a linear spring-and-dashpot, i.e., fni j = knyi j −
2By definition, the CPD is normalized as

∫ ∞
−∞W(ξ′|ξ)dξ′ = 1.
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Figure 2: (Colour online) Image of the initial configuration

of a sample under an isotropic stress loading of 20 kPa in

the "1γ2ε" device. The frame is 599.4 × 444.7 mm. The

solid lines represent the edges obtained with a Delaunay

Triangulation: red lines are for real contacts, while virtual

contacts (i.e., neighbours) are in blue.

ηnẏi j, for yi j > 0, (having assumed a unit mass for all disks,

despite the different sizes), where kn and ηn are a normal

stiffness and normal viscosity coefficient, respectively, and

yi j is the overlap. Thus, the relative speed in the normal

direction is given by its time derivative, ẏi j. The tangen-

tial force is also introduced as fti j = ktzi j − ηtżi j, which

is switched to the sliding friction or Coulomb’s friction,

μ| fni j|, when it exceeds this threshold. Here, we introduced

kt = kn/2, ηt = ηn/4, and μ = 0.5 (consistently with the

experimental value) as tangential stiffness, tangential vis-

cosity coefficient, and friction coefficient, respectively. In

addition, zi j and żi j represent relative displacement and rel-

ative speed in tangential direction, respectively [13].

We first generate a dense packing of the disks in a L×L
square periodic box as described in [7]. Then, we apply

isotropic compression to the system by rescaling every ra-

dius proportionally to the area fraction increment δφ and to

the radius itself. After compression, we relax the system to

mechanical equilibrium. For later analyses, we introduce

a scaled strain increment as γ ≡ δφ/(φ − φJ), with the so-

called jamming density, φJ � 0.8458 [14], where we have

confirmed in our previous study of bidisperse frictionless

particles [7] that the widths of the CPDs were proportional

to γ.

5 Results

Fig. 3 shows experimental results of the CPDs for CC tran-

sitions, where the scaled strain increment was γ � 0.074.

In this figure, the CPDs are nicely symmetric and are

well described by γWCC(ξ′|ξ) = fc(Ξc/γ) (the solid lines),

where Ξc ≡ ξ′ −mc(ξ) is the distance from the mean value,

mc(ξ), and

fc(x) =
1

c(qc)

[
1 +

x2

n(qc)V2
c

] 1
1−qc

(4)
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Figure 3: The CPDs (a) for CC transitions multiplied by

the scaled strain increment, γ, and plotted against scaled

distances from the mean values, Ξc/γ, with its semi-

logarithmic plot (b), in experiments. The plot refers to

one single loading step. Scaling of overlaps by the strain

increment, γ, was applied. The solid lines are q-Gaussian

distributions with qc � 1.21.
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Figure 4: The CPD (a) for CC transitions with its semi-

logarithmic plot (b) from numerical simulations. The

different symbols represent different values of the scaled

strain increment, γ, as listed in the legend of (a). The solid

lines are q-Gaussian distributions with qc � 1.19.

is the q-Gaussian distribution function [15] with:

n(t) = (t − 3)/(1 − t)
c(t) = Vc

√
n(t)B (1/2, n(t)/2) ,

(5)

where B(x, y) is the beta function. Then, the shape of the

CPD is characterized by the q-index, qc, defined in the

range between 1 < qc < 3, where we find qc � 1.21 from

the experiments. Therefore, the CPD for CC transitions

deviates from the Gaussian distribution (corresponding to

the limit qc → 1), indicating some moderate correlations

between the changes of overlaps.

Fig. 4 shows our numerical results of the CPDs for

CC transitions, where the different symbols represent dif-

ferent values of the scaled strain increment, γ. In this fig-

ure, all the data well collapse if we multiply the CPDs,

WCC(ξ′|ξ), and distances from the mean value, Ξc, by γ
and 1/γ, respectively, which means that the CPDs are self-
similar against the change of scaled strain increment γ,
for small γ [7]. The solid lines are the q-Gaussian distri-

butions, Eq. (5), where the q-index is given by qc � 1.19

which is very close to our experimental result.

Fig. 5 displays experimental results of the CPDs for

VV transitions, where γ � 0.074. The solid lines represent

q-Gaussian fits, where the q-index is fitted as qv � 1.31.

Fig. 6 shows our numerical calculations of the CPDs

for VV transitions, where the different symbols represent
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Figure 5: The CPD (a) for VV transitions with its semi-

logarithmic plot (b) in the experimental case, as in Fig.

3. The solid lines are q-Gaussian distributions with qv �
1.31.
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Figure 6: The CPD (a) for VV transitions with its semi-

logarithmic plot (b), from numerical simulations, as in Fig.

4. The solid lines are q-Gaussian distributions with qv �
1.09.

different values of γ. Here, we also confirm the self-

similarity of the CPDs, where they are well collapsed by

the same scaling used in Fig. 4. In this figure, the solid

lines are q-Gaussian fits with the q-index, qv � 1.09, which

turns out to be considerably smaller than for the experi-

ments and for frictionless data [7, 8].

6 Summary and outlook

In this study, we have experimentally and numerically in-

vestigated the CPDs of overlaps and gaps between neigh-

boring particles in jammed granular materials. From

our experimental tests of isotropic compression, we have

found that the changes of overlaps and gaps are strongly

correlated such that the CPDs exhibited the non-Gaussian

behavior. Assuming Tsallis’ q-Gaussian statistics for the

complicated restructuring, we have described the CPDs

by the q-Gaussian distribution functions, where the exper-

imentally obtained q-indices well agreed with those ob-

tained from our MD simulations of frictional disks.

Similar q-indices are related to similar shapes of the

curves in Figs. 3-4; there are several possible interpreta-

tions for this similarity, as it can be related to long-range

correlations (meaning that the same correlation length is

found in experiments and simulations), but also to long-

time correlations, memory and other alternative physical

explanations. Apart from the exact interpretation, the most

relevant feature to highlight is the reproducibility of some

aspects between experiments and simulations.

In future, we plan to extend our study to the case of

simple shear deformations, where more drastic restruc-

turing and "recombinations" of the force network can be

expected. For completeness, we also need to study the

CPDs for contact-to-virtual (CV) and virtual-to-contact

(VC) transitions, as in Ref. [7].
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