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Abstract. The paper presents a multi-scale modeling of Boundary Value Problem (BVP) approach involving

cohesive-frictional granular materials in the FEM × DEM multi-scale framework. On the DEM side, a 3D

model is defined based on the interactions of spherical particles. This DEM model is built through a numeri-

cal homogenization process applied to a Volume Element (VE). It is then paired with a Finite Element code.

Using this numerical tool that combines two scales within the same framework, we conducted simulations of

biaxial and pressuremeter tests on a cohesive-frictional granular medium. In these cases, it is known that strain

localization does occur at the macroscopic level, but since FEMs suffer from severe mesh dependency as soon

as shear band starts to develop, the second gradient regularization technique has been used. As a consequence,

the objectivity of the computation with respect to mesh dependency is restored.

1 Introduction

Since its appearance in the late 70s, the Discrete Element

Method (DEM) has become well known as an effective

method for modeling granular material at the grain scale.

Despite the advantages of the DEM approach, it seems ex-

tremely challenging in most cases to model directly with

DEM boundary value problems (BVP) involving the ac-

tual size of both the grains and the structure, because of

the tremendous amount of grains and current abilities of

computers.

On the contrary, the Finite Element Method (FEM) is

appropriate for the modeling of BVP. However, seeking

for a constitutive model that can account for all the rele-

vant properties of granular materials, or a significant part

of them, is difficult - and even not possible. Such mathe-

matical (often very sophisticated) models are necessarily

phenomenological, and involve a number of parameters

for which the physical meaning can be tricky.

To face this issue in the field of granular matters, the

FEM × DEM multi-scale approach has been recently pro-

posed by various researchers [1–3]. Its basic concept lies

on replacement of the phenomenological model by the

constitutive response of the material with the use of DEM

computations.

Using this approach, the actual grain scale can be con-

sidered even with large size macroscopic problems; with-

out facing the intractable issue of dealing with trillions of

grains in a DEM-mapped full field problem. Micro-scale

related features, such as inherent and induced anisotropy
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of the granular material, or softening/hardening, emerge

naturally from the micro-scale DEM model.

Localized failure is a major issue to be considered for

modeling BVP related to geotechnical engineering. In

this study, we present a (plane strain-FEM) × (3D-DEM)

model of BVP with cohesive-frictional granular materials

and an emphasis on strain localization. To avoid FEM

mesh dependencies for shear bands, an internal length is

introduced by means of the 2nd gradient regularization

technique. Thanks to this technique, associated with a

high performance computing ability of the code (MPI par-

allelization), the tool is now able to address some real-size

geotechnical structures by accounting grain-scale features

and strain localization.

The paper is laid out as follows: Section 2 presents the

principle of FEM × DEM method. Section 3 gives some

results related to biaxial tests and hollow cylinder cases

modeled by this innovative approach. Some conclusions

are drawn in Section 4.

2 Multi-scale modeling

The resolution of a BVP by the FEM requires a constitu-

tive law used at each integration point of the mesh. This

law is supposed to express the local stress as a function of

the history of the local deformation gradient. In our case,

this constitutive law is not formulated mathematically ac-

cording to a plasticity theory, nor it comes from a math-

ematically formulated phenomenological law; instead, it

results directly from the response of a DEM volume ele-

ment (VE) as a function of the history of local deforma-

tion gradient provided by the FEM (see figure 1). The
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Figure 1. A sketch of the concept of DEM constitutive law

latter response can be considered to be similar to that of a

constitutive law with a large (but finite) number of inter-

nal variables such as: grain geometries, contact network

and contact forces. The procedure to build this numerical

homogenized law is detailed in [3, 4].

2.1 3D discrete element micro-model

We describe only some main features of the micro model.

The numerical model of granular behavior is herein ob-

tained by a DEM approach using periodic boundary con-

ditions (PBC) (see chapter 7 in [5]). The VE associated

with each Gauss point is a packing of spheres. All spheres

interact via a linear elastic force-law in the normal direc-

tion and the Coulomb friction law in the sliding direction.

Accordingly, the normal repulsive contact force fel is re-

lated to the overlap distance as fel = kn · δ , where kn is

a normal stiffness. The intensity of the friction force ft
evolves incrementally and proportionally to the tangential

relative displacement - with a tangential stiffness kt - up to

a limit constant value ±μ fn when sliding occurs (μ is the

Coulomb friction coefficient). In order to model cohesive-

frictional granular materials, a local cohesion is introduced

between the grains by adding an attractive (negative) force

fc to fel. As suggested by [6], this local cohesive force

can be set in regards to the mean level of reduced pressure

p∗ = fc/(σ0 · a2), where a is the mean diameter of grains

and σ0 is the 3D isotropic pressure of VE.

All these features put together provide a numerical
homogenized law (NHL) with a Mohr-Coulomb-like re-

sponse, but it is actually much richer since it is able to han-

dle very subtle responses involving, e.g., volume changes,

non-associated flow, hardening/softening, fabric depen-

dency and cyclic loading.

2.2 Coupling with the FE macro-model

The FEM×DEM approach has been implemented in the

FEM code Lagamine [7], which is able to perform finite

strain analysis. The implementation consists in pairing the

DEM code as another "constitutive law", and solving some

specific difficulties linked to convergence issues. The nu-

merical integration of the constitutive law requires solving

a nonlinear system of equations when the mechanical be-

havior is non-linear, which is the case for granular materi-

als. In order to solve the non-linear system of equations, an

incremental-iterative Newton-Raphson strategy is adopted

[8]. This requires computing a consistent tangent operator

C, where the word "consistent" relates to the consistency

with respect to the stress update algorithm as defined in

Eq. 1 [9, 10].)

Ci jkl =
∂dσi j

∂dεkl
(1)

The consistent tangent operator can be derived analyti-

cally for a simple law, but for more complex laws, numeri-

cal differentiation needs to be adopted. However, a conver-

gence problem is encountered when the consistent tangent

operators are calculated in a phase of pronounced soft-

ening. Indeed, the scattered response provided by DEM

calculation in the VE (and inherent to the nature of dis-

crete matters) may cause some convergence difficulties. A

specific modified Newton-Raphson algorithm has been de-

veloped in the code Lagamine to overcome these issues.

Instead of the tangent operator defined above, we use an

operator extracted from the underlying granular structure

of the VE as described in [11, 12]. Since the relation by

Kruyt and Rothenburg is only valid for 2D problem, an

extended solution for the 3D case is proposed (Eq. 2) . It

results in the following form of elastic stiffness operator:

Ci jkl =
1

V

∑

c∈V
(knnc

i lcjn
c
klcl + kttc

i lcjt
c
klcl + ktw

c
i lcjw

c
klcl ) (2)

where V is the volume of granular packing. kn, kt are

normal and tangential contact stiffness, respectively; l is

the branch vector connecting two centers of particles in

contact; n, t and w are three vectors that define the contact

forces directions: n is the normal direction, t and w are

arbitrarily positioned in the sliding plan so that w = n × t.

3 Examples of BVPs

Although the NHL DEM model implemented in the study

is a 3D model, it can be used in plane strain, plane stress

and 3D FEMmodels. In this paper, we discuss plane strain

BVPs, using 2D finite elements.

3.1 Biaxial Tests

Figure 2a presents the geometry and boundary conditions

of biaxial test simulations. The constant confined pres-

sures σ2 is applied on the lateral sides and a vertical dis-

placement at constant velocity is imposed on the top sur-

face of the sample.

As shown in previous work of the same authors [3]

or in ref. [13], it is well known that implementing strain

softening constitutive laws in FEM produces mesh depen-

dency: the deformation concentrates in zones as narrow as

the mesh permits, independent of any material parameter.

     
 

DOI: 10.1051/, 714011007140EPJ Web of Conferences epjconf/201
Powders & Grains 2017

11007   (2017)

2



Figure 2. (a) Spatial discretization of the problem; (b) element

enriched for the 2nd gradient technique [15]

In order to restore a mesh independent behavior in such

computations, an enrichment of the constitutive model fol-

lowing [13, 14] is used. This enrichment involves the ad-

dition of a second gradient term to the constitutive model,

the classical (first gradient) part being still given by the

NHL DEM described above. The domain is discretized by

using 128 (1st case) or 512 (2nd case) 2D elements second

gradient (see figure 2b). These elements use eight nodes

for the macro kinematic field (displacement field ui), four

nodes for the micro-kinematic field (micro deformation

gradient vi j) and one node for a Lagrange multiplier λi j

which is used to impose the equality of the microscopic

and the macroscopic deformation gradient. Details about

the second gradient method can be found in [13] or [14].

At the micro scale level, identical VE of 1000 spheres

are used at each Gauss point. The volume is isotropically

loaded and all contacts are compressive but with adhe-

sion. This represents a cohesive-frictional granular ma-

terial. The microscopic parameters have been chosen ac-

cording to classical dimensional analysis: (i) the stiffness

ratio is kn/kt = 1, (ii) the cohesion force fc is defined so

that p∗ = 1, (iii) the normal stiffness kn is defined to ob-

tain a stiffness parameter κ = kn/σ0 = 500 and (iv) the

intergranular coefficient of friction is μ = 0.5

The macroscopic responses of the biaxial tests are

given in figure 3, with comparison to DEM simulation on

the single VE of 1000 spheres. The responses show that

the 2nd gradient model regularize the post-peak responses,

especially after ε11 = 5% , as the softening response of

Figure 3. Stress-strain responses of biaxial tests (FDmeans FEM

× DEM computation): DEM (continuous line), FD 128 elements

(continuous line with �) and FD 512 elements (continuous line

with ◦)

Figure 4. Map of the second invariant of strain tensor at ε11 =

10% for (a) 128 elements and (b) 512 elements

two cases are almost identical. It is confirmed again in

figure 4 that uses the 2nd invariant of strain tensor to ex-

hibit the shear band at ε11 = 10% . In first gradient model,

shear bands tend to concentrate into a band of one element

width [3]. As result of 2nd gradient model effect, shear

band consists now of few elements. From this figure, it

can be checked that the observed width of the shear band

is intrinsic and independent of the mesh size.

3.2 Hollow Cylinder

These simulations predict the response of the material in

the mid-place section of a pressuremeter, assuming plane

strain condition in the axial direction. Because of the sym-

metry of the problem, only one fourth of a plane section is

modeled. The domain is discretized using either first gra-

dient element (Q8: 8 nodes, 4 Gauss points) or 2nd gradient

element (see figure 5d). The computation was performed
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Figure 5. Numerical model setup: (a) hollow cylinder; (b) sec-

tion A-A; (c) mechanical loading; (d) FE mesh and boundary

conditions

Figure 6. Multiscale modeling of hollow cylinder pressurized

as follows: starting from a homogeneous state of isotropic

compression, the internal pressure (σint) was increased up

to 4 times of the initial isotropic stress, while the external

pressure (σext) was kept constant. Numerical model setup

and other related informations are given in figure 5.

Figure 6 shows the deformation mode in the model at

the end of the loading in terms of the second invariant of

strain tensor: (a) mesh with 952 standard Q8 elements (1st

gradient, i.e. no regularization); (b,c) enriched elements

(2nd gradient), two different meshes using 870 (b) or

1280 (c) elements. In the three cases presented in this

figure, strain localization has taken place, organized in

shear bands originated at the internal wall and progressing

significantly inside the cylinder. This is the result of the

inherent strain softening exhibited by the materials. In (b)

and (c), the thickness of the shear bands does not depend

on the mesh size, while in (a) it concentrates into a single

layer of elements. These results demonstrate the capacity

of this novel multi-scale approach to account for complex

failure patterns. It is shown again that the second gradient

method mitigates efficiently the mesh dependency prob-

lem observed with classical (first gradient) constitutive

models.

4 Conclusion

A numerical law based on Discrete Element Modeling has

been presented. This is accomplished in the framework of

numerical homogenization applied to granular media. The

model has been implemented in a finite element code. Due

to scattering in the response of a model by DEM, some dif-

ficulties in the determination of consistent tangent opera-

tors occur, inducing convergence problems in the Newton-

Raphson interactive processes in the FEM code. An alter-

native solution using an elastic stiffness operator instead

of the tangent operator is shown to solve the difficulty.

Thanks to the multi-scale FEM × DEM numerical ap-

proach, examples of BVPs involving strain localization is

proposed, simulating biaxial tests and pressurized hollow

cylinder cases. Strain localization is observed at macro

level. The second gradient method is shown to solve effi-

ciently the mesh dependency problem.
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