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Abstract. We focus herein on the mechanical behavior of highly crushable grains. The object of our interest,

named shell, is a hollow cylinder grain with ring cross-section, made of baked clay. The objective is to model

the fragmentation of such shells, by means of discrete element (DE) approach. To this end, fracture modes I
(opening fracture) and II (in-plane shear fracture) have to be investigated experimentally. This paper is essen-

tially dedicated to mode I fracture. Therefore, a campaign of Brazilian-like compression tests, that result in

crack opening, has been performed. The distribution of the occurrence of tensile strength is shown to obey a

Weibull distribution for the studied shells, and Weibull’s modulus was quantified. Finally, an estimate of the

numerical/physical parameters required in a DE model (local strength), is proposed on the basis of the energy

required to fracture through a given surface in mode I or II.

1 Introduction

The discrete element method (DEM) is commonly used to

model the response of rigid grains assemblies [1–3], but it

has been also employed by various researchers in studying

the behavior of crushable particles packings [4, 5].

Among all existing approaches capable of modeling

particle breakage, two are frequently used. The first one

takes into consideration the rigid particles that will be re-

placed by smaller ones, when the breakage must occur (ac-

cording to the grain loading criterion) [6]. This approach

has the advantage of the simplicity but may have the disad-

vantage of having material losses under certain conditions.

In the second approach the grain is created by assembling

smaller particles together [7, 8] – then the assembly bonds

correspond to the pre-cracks of the grain. It is this second

approach that we will choose in this article.

In this study, we focus on the peculiar 3D shape of

grain which is a cylinder with ring cross-section, referred

to as shell. Whereas we aim to study the micro-macro me-

chanical behavior of large, dense assemblies of crushable

shells, we propose herein a strategy to model 3D grains,

shaped as hollow cylinders, by means of DEM.

Since the packing of such shells is a new granular ma-

terial, this research starts, at the grain scale, with the inves-

tigation of a single shell fracturing. Firstly, an experimen-

tal campaign has been performed, in order to extract the

actual strength of the shells. Since these shells are made

of baked clay, it is worth noting that the strength of brittle

material may obey Weibull statistics, based on the theory

of the weakest link. The distribution of the tensile strength,
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that prevents mode I fracture, is then analyzed assuming

that it is related to the shell geometry. With the objective to

model the shell fracture with a discrete element approach,

an estimate of the DEM strength-parameters is proposed

for the cluster of sphero-polyhedra (the shell is subdivided

into parts bonded together by means of a force-law).

2 Mechanical properties of the shells

The particles, made of baked clay, are tube-shaped shells

(Figure 1(a)) and result from an industrial process. In fact,

two grain sizes are manufactured. Before been baked at

high temperature, the particle diameter is either 18 or 20

mm. Once baked, the grain dimensions, sketched in Fig-

ure 1(a), show small geometrical variations as reported in

Table 1.

A number of radial compression tests (Brazilian-like

tests) have been performed (see inset in Figure 2(a)). This

test has been chosen because it allows indirect measure-

ment of a tensile strength and involves crack opening, that

corresponds to mode I fracture. These experiments have

(a) (b) (c)

Figure 1: Studied shell: (a) its dimensions, (b) position in

the experimental setup, and (c) four pieces after breakage.
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Table 1: Name of the size, number of tests and geometrical

description of tested tube-shaped shells. See Figure 1(a).

No. D = 2R [mm] h [mm] t [mm]

D18 33 16.5 ± 0.4 17.4 ± 1.3 2.4 ± 0.1
D20 50 18.2 ± 0.4 18.4 ± 1.5 2.8 ± 0.1

(a)

(b)

Figure 2: Force F vs. vertical displacement δ curves re-

sulting from the radial compression tests, performed on

two sizes of tube-shaped grains with a constant imposed

displacement rate (δ̇ = 0.02mm/s): (a) D18 and (b) D20.

Inset: a sketch of the loading condition.

been performed using a standard loading frame. A verti-

cal force F was measured on the outside wall of the shell;

Figure 1(b). The total number of performed tests is given

in Table 1. Each test ended when the shell broke most

often into four pieces as shown in Figure 1(c). The ra-

dial shell shortening δ and the vertical compressive force

F were recorded all along each test. Figures 2(a) and 2(b)

show all force-displacement curves for tested shells D18

and D20, respectively.

From the compression tests, two quantities can be ex-

tracted: the maximum force at failure Fmax and the corre-

sponding vertical shortening δmax of the shell. Observed

variations in the mechanical response of the shells, as

shown in Figure 2, may result from the geometrical het-

erogeneity of the particles (see Table 1), but also from the

material heterogeneity. In particular, some internal flaws

such as air bubbles can be trapped in the crude clay when

it is formed.

When failure arises, the maximum tensile stress is lo-

calized at the vertical of the compression force on the inner

cylindrical wall of the shell, as illustrated in Figure 3. For

this configuration, it can be shown that σmax is a function

of the external radius R, the thickness t and the height h of

the shell [11]. Assuming that the thickness t does not vary
significantly from one shell to another, it is shown that

σmax ∝ Fmax

R h
K(t) , (1)

whereK(t) is a stress concentration factor that depends on

t. Thanks to its very small variation from a shell to an-

other, t is hereafter (and consequentlyK(t)) assumed to be

constant. Figure 4 reports the forces Fmax as a function

of the vertical shortening δmax at breakage. In the inset

of the same figure, Fmax has been divided by Rh to scale

with the maximum tensile stress at breakage, and δmax has

been divided by R to scale with the radial strain. That

way, it is expected to cancel the scattering due to geomet-

rical differences between the shells. However, no collapse

is observed even if the cloud of points seems to be less

spread. The variations in strength is thus a consequence of

the heterogeneity of the clay matter itself.

3 Statistical analysis of tensile strength

TheWeibull theory is supposed to be adequate for describ-

ing the statistical distribution of strength for quasi-brittle

material. If P(x) represents the cumulative distribution

function of the occurrence of a strength x (this strength

can be expressed in terms of force, stress or energy for ex-

ample), then the survival probability PS (x) = 1 − P(x) is
expressed as follows:

PS (x) = exp

{(
− x

x0

)m}
(2)

where m is a shape parameter (also called Weibull’s mod-

ulus) and x0 a scale parameter. Note that the higher is the

shape parameter m, the smaller is the variation of strength

x. It is convenient to use double logarithmic scale, that re-

sults from a linearization of Equation (2), so that the shape

Fmax

Figure 3: The maximum tensile stress is localized in the

direction of the force on the inner wall of the shell. It is

here shown by the double red arrows.
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Figure 4: Fmax at failure versus the corresponding dis-

placement δmax for two grain sizes before normalization.

Inset: Maximum force at failure Fmax normalized by the

radius and the length of the grain versus δmax normalized

by the radius of the particles.

Figure 5: Weibull’s distribution of the shell strength. Sym-

bols are experimental data, and continuous line is related

to Equation (2). Inset: the same plot in linearized scale –

Equation (3) – used to identifyWeibull’s modulus m = 6.7.
For three point bend test, in which the material fails also in

tension, various types of ceramics have wide distributions

described by Weibull’s modulus ranging from 6 to 12.

parameter can be determined from the slope of this rela-

tion:

ln ◦ ln
(

1

PS (x)

)
= m

(
ln x − ln x0

)
(3)

This analysis can be applied with the normal strength

Fmax measured for the shells, normalizing it with Rh to

limit the scattering caused by geometric variations. Fig-

ure 5(inset) clearly shows that most of the data follow a

straight line according to Equation (3), and it obeys, as

expected for quasi-brittle materials, the weakest link the-

ory. Hence, Weibull distribution provides here a reliable

first order statistical model for setting the shells strength

(Figure 5) when submitted to vertical compression.

4 Towards a DE model for shell crushing

One final objective of this study is to explore the mechan-

ical response of an assembly of breakable shells by using

the DEM. We hope to determine the most relevant geo-

metrical parameters that may influence significantly the

shear resistance of such assemblies. Thus, a model of shell

needs to be designed for this purpose.

Within an assembly, the loading mechanism of a single

shell can be complex, and both mode I and mode II frac-

tures can be activated. In case of mode I, it has been ex-

perimentally observed that the fracture surfaces are always

radial (Figure 1(c)). Mode II characterization also requires

breakage trough radial planes. Therefore, it was chosen to

pre-define these surfaces by “sticking” some rigid, poly-

hedral elements in such a manner that they form the global

shape of a shell (Figure 6 (a)). From the DE technical point

of view, the adjacent elements are joined via four points,

i.e., spheres in contact. To define the contact forces, two

directions are considered: the direction I normal to the pre-

defined plan of fracture (Figure 6(b)) and the sliding direc-

tion II (Figure 6(c)). The corresponding elastic forces fI

and fII are functions of the relative displacements (dI and

dII) and the respective stiffnesses kI and kII . The behav-

ior of the shell is in the elastic phase, until the following

failure surface is reached:

fI

f �I
+

(
fII

f �II

)q

− 1 = 0 (4)

where f �I and f �II are the yield cohesive forces for pure

tensile and pure shear loading, respectively, and q is a pa-

rameter that shape the yield surface.

To complete the particle model, the threshold values

f �I and f �II as well as the stiffnesses kI and kII have to be

determined. To this end, one can use the energy storage
capacityW�, that for the selected mode of loading can be

defined from the experimental force-displacement curve:

Wexp(δ) =

∫ δ

0

Fdδ (5)

so thatW� =Wexp(δmax). Note thatWexp(δ) includes an
energy contribution, related to shell-device contact, how-

ever, it is negligibly small and omitted in modeling con-

cept. From the DEM side, this quantity can be assessed

S'

(a) (b) (c)

Figure 6: (a) 3D DEM model of a shell is a cluster

of 24 non-deformable sphero-polyhedra. One sphero-

polyhedron consists of 6 cylinders as edges, 8 spheres as

corners and 6 polygons as faces. The adjacent parts are

joined via four contact points between the spheres. (b)

contact opening in fracture mode I, (c) contact opening in

fracture mode II

     
 

DOI: 10.1051/, 07015   (2017) 714007015140EPJ Web of Conferences epjconf/201
Powders & Grains 2017

3



by means of the local force-displacement evolution of the

bonded links. Assuming kII =
2−2ν
2−ν kI = βkI [12], where ν

is the Poisson coefficient , the elastic energy storage reads:

WDEM(δ; kI) =
kI

2

∑
contact c

((
d(c)

I

)2
+ β

(
d(c)

II

)2)
(6)

The value of kI can easily be determined using a sin-

gle DEM simulation for an arbitrary stiffness k̃I , so that

following relation is satisfied:

kI

k̃I
=

Wexp(δ)

WDEM(δ; k̃I)
(7)

Depending on the main fracture mode involved in the

experiment, a first-order estimate of the yield force can be

proposed by considering the energy storage capacity per
unit surface W�/S , and by noting that each bond with-

stands a quarter of predefined surface of rupture S ′ = th:

〈W�•
S

〉
� 4〈 f �• 〉2

k• t h
thus 〈 f �• 〉 �

√〈W�•
S

〉
k• t h
4

(8)

where S is the total fracture surface; 〈x〉 is the mean of

x; the symbol • stands for I or II depending on the main

fracture mode; and the symbol � means that the left and

right hand of the expression should evolve similarly and

have a comparable order of magnitude.

To perform a simulation of an assembly, the variation

of shell strength can be estimated from the distribution of

the yield force. Such distribution can be assessed from the

distribution ofW�/S , and Equation (8) suggests that:

PS ( f �I ) ∝ PS

(√
W�

I /S
)

(9)

For the shells, that are made of quasi-brittle material,

a Weibull distribution is still expected, and Figure 7 shows

such occurrence. It allows us to access the Weibull’s mod-

ulus for the distribution of
√
W�

I /S and thus the distribu-

tion of f �I can be quantified.

Figure 7: Weibull distribution of the square root of en-

ergy storage capacity per unit surface from radial compres-

sion tests, that reflects the distribution of the local yielding

force for mode I rupture. Symbols are experimental data,

and continuous line is related to Equation (2). Inset: the

same plot with linearized scale – according to Equation (3)

– used to identify Weibull’s modulus m = 9.26

5 Conclusions and perspectives

An experimental campaign involving a great number of ra-

dial compression tests has been performed. The objective

was to characterize the material resistance of tube-shaped

grains made of baked clay, called shells. The variability

of the macroscopic strength was studied within a statisti-

cal framework and it was shown to obey the Weibull the-

ory. To model breakable shells by 3D-DEM, predefined

fracture plans are bonded by cohesive elastic forces that

can break according to a local yield criterion. A solu-

tion to assess experimentally the mean local strengths re-

lies on the macroscopic energy storage capacity for each

fracturing mode of the shell. Furthermore, the dispersion

of these strengths can be characterized from macroscopic

tests, and for the breakage in mode I it is shown to also

obey a Weibull distribution.

The experimental campaign needs to be completed

with shear tests on the shells to investigate their fracture

in mode II. Once a single shell will be satisfactorily mod-

eled, the next step will focus on the mechanical responses

of an assembly of breakable shells subjected to triaxial and

odometric loadings.
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