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Abstract The paper presents a FEM × DEM multiscale modeling analysis of 
boundary value problems involving strain localization in cohesive granular  materials. 
At the microscopic level, a discrete element method (DEM) is used to model the 
granular structure. At the macroscopic level, the numerical solution of the boundary 
value problem (BVP) is obtained via a finite element method (FEM) formulation. 
In order to bridge the gap between micro- and macro-scale, the concept of represent-
ative volume element (REV) is applied: the average REV stress and the consistent 
tangent operators are obtained in each macroscopic integration point as the results 
of DEM simulation. The numerical constitutive law is determined through the DEM 
modeling of the microstructure to take into account the discrete nature of granular 
materials. The computational homogenization method is described and illustrated 
in the case of a hollow cylinder made of cohesive-frictional granular material, 
submitted to different internal and external pressures. Strain localization is observed 
to occur at the macro scale in this simulation.

1  Introduction

When modeling boundary value problems encountered in geotechnical  engineering, 
the designer has often to consider the risk of localized failure. Besides long-standing 
works on experimental characterization of shear banding in laboratory tests and 
physical models, trying to catch as realistically as possible the localized failure 
in computational geomechanics has been the subject of theoretical and numerical 
works for a long while in the IWBDG community.

Recently, multi-scale analysis using a numerical approach of the  homogenization 
of the microstructural behavior of materials to derive the constitutive response at 
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the macro scale has become a new trend in numerical modeling. In recent years, 
different authors have proposed multi-scale approaches (Kouznetsova et al. 
2001; Miehe and Dettmar 2004; Meier et al. 2008) to investigate the behavior of 
materials by using informations from the micro level. As for granular media, 
a two-scale fully coupled approach can be defined by using FEM at the mac-
roscale, together with DEM at the microscale (Nitka et al. 2009, 2011; Guo and 
Zhao 2013). Despite an evident computational cost penalty with respect to mono-
scale approaches like FEM and DEM, two-scale FEM × DEM approach allows 
one to perform real-size grain micro-structure modeling on real-size macroscopic 
problems, without facing the intractable problem of dealing with trillions of grains 
in a fully DEM mapped full field problem. Using this approach, microscale related 
features such as the inherent and induced anisotropy of the material, or material 
softening/hardening with strain, flow naturally from the microscale DEM model to 
the macroscale FEM model. An implementation of the FEM × DEM method in the 
FEM code Lagamine (ULg) (University of Liège, Belgium) is presented, and repre-
sentative results are discussed, including aspects related to strain localization.

2  Multi-scale Coupling Method

A two-scale numerical homogenization approach by FEM × DEM is  considered, 
Fig. 1. At the microscopic scale level (for each FEM Gauss point), the consti-
tutive equation σ = "(ε) is numerically obtained by a DEM simulation on a 

DEM: DISCRETE ELEMENT METHOD 

FEM :  FINITE ELEMENT METHOD
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Fig. 1  Computational homogenization scheme
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representative elementary volume (REV). The stress response of the REV is 
 computed using the classical homogenization formula defined in Weber (1966):

where S is the volume of the REV (area in 2D). f ci  and lcj  are respectively the 
 component i of the contact forces acting in contact c and the component j of the 
branch vector l joining the mass centers of two grains in contact.

At the macroscopic level, a numerical solution for the BVP is obtained using 
FEM. In every Gauss point of all the elements of the mesh, a specific REV is 
attached and followed all along the computation, and the stress in this Gauss point 
at the time t results from the whole deformation history of the REV. A  consistent 
tangent stiffness matrix Cijkl is computed by numerical perturbation, giving the 
stress increment as a function of the displacement gradient:

3  Micro-scale (DEM) Model

The numerical model of the granular material behavior is herein obtained by a 
DEM approach (soft-contact dynamics type) using periodic boundary conditions 
(PBC), following (Radjaï and Dubois 2011). The specific REV associated to each 
Gauss point is made of a dense packing of 400 polydisperse disks, as shown in 
Fig. 2. Comparing the response of different REVs involving an increasing num-
ber of disks, this choice leads to a response reasonably close to the asymptotic 
one. All grains interact via linear elastic laws and Coulomb friction when they 
are in contact (Cundall and Strack 1979). Accordingly, the normal repulsive con-
tact force fel is related to the normal apparent interpenetration δ of the contact as 
fel = kn · δ, where kn is a normal stiffness coefficient (δ > 0 if a contact is present, 
δ = 0 if there is no contact). The tangential component ft of the contact force is 
proportional to the tangential elastic relative displacement, with a tangential stiff-
ness coefficient kt. In order to model cohesive-frictional granular materials, a local 
cohesion is introduced at the level of each pair of particles by adding an attractive 
force fc to fel; fc is constant for each contact. The overall normal force for two 
grains in contact is fn = fel + fc. The Coulomb condition ∥ft∥ ≤ µ · fel requires an 
incremental evaluation of ft in each time step, which leads to some amount of slip 
each time one of the equalities ft = ±µ · fel is imposed. In that study, kn is such 
that κ = kn

/

σ2 = 1, 000 (Combe and Roux 2003), where σ2 is the 2D isotropic 
pressure. The stiffness ratio is kn

/

kt = 1. The adhesion force fc is defined by 
reference to the mean level of pressure as suggested by Gilabert et al. (2007): 
p∗ = fc

/

(a · σ2) where a is the typical diameter of grains. So p∗ is a ratio scaling 
the attractive part of the mean stress in the sample with the repulsive part due to 
particle overlap. Hereafter, p∗ = 1. The intergranular friction angle is µ = 0.5.

(1)σij =
1

S

Nc
∑

c=1

f ci · lcj

(2)dσij = Cijkl ·
∂duk

∂xl
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A degradation of the cohesion is taken into account by considering a  vanishing 
of fc at a contact when sliding or separation occurs. This corresponds to a  simple 
model of granular materials with brittle cemented contacts. The mechanical 
response of the REV exhibits strain softening (Fig. 3).

Fig. 2  A REV of 400 particles with PBC. The contact forces are displayed with the following 
conventions: the width of the lines joining the centers of two particles in contact is proportional 
to the amplitude of the normal force. Red, green, blue lines distinguish respectively compressive 
forces with cohesion (fn > 0, fc < 0), cohesionless contacts (fn > 0, fc = 0) and attractive con-
tacts (fn < 0, fc < 0)

Fig. 3  Mechanical response of the REV of 400 cohesive-frictional discs submitted to a biaxial 
loading. The blue curve corresponds to the evolution of the normalized vertical deviatoric stress 
(

q
/

σ2
)

, q = σ1 − σ2 versus the vertical strain ε11. The green curve displays the evolution of the 
volumetric strain εvv = tr(ε) along the biaxial compression. Strain softening is obtained as the 
result of the degradation of the contact strength and distribution
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4  FEM × DEM Simulation of BVPs

The FEM × DEM approach was implemented in the FEM code Lagamine that is 
able to perform finite strain analysis. The implementation consisted in inserting 
the DEM modeling code as a new constitutive law, and solving some specific 
 difficulties linked to the determination of the consistent tangent operator. Different 
BVPs were studied, showing strain localization due to the inherently strain-sof-
tening behavior of the micro-scale model. The case of a biaxial test has been 
presented in Nguyen et al. (2013). Due to lack of space, the present paper con-
centrates on the results of the simulation of a pressurized hollow cylinder, using 
400 eight-nodes quadrilateral order-2 elements with 4 integration points, with 
the geometry shown in Fig. 4 and the loading conditions in Fig. 5: starting from 
an homogeneous state of isotropic compression, first the internal pressure is 
decreased to zero then the external pressure is increased up to 4 times the initial 
isotropic stress.

Fig. 4  2D model of a hollow cylinder

Fig. 5  Modeling of 2D hollow cylinder: discretization in finite elements and loading conditions
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Figure 6 shows the deformation mode in the model at different stages of the 
loading: (a) after internal pressure drop, (b) and (c) after large external pressure 
increase. In (a), the deformation is more or less axisymmetric with a strong 
gradient in the radial direction in the immediate vicinity of the internal wall; but 
in (b) and (c) strain localization has taken place, organized in spiral shear bands 
originated at the internal wall and progressing significantly inside the cylinder, 
as illustrated in more details in the zoom at t = 10,000 s in Fig. 7. This is the 
result of the inherent strain softening exhibited by the material as shown in Fig. 3. 
This result shows the ability of the FEM × DEM scheme to produce complex and 
realistic computations in BVPs. On the other hand, it is well known that imple-
menting strain softening constitutive laws in FEM produces mesh dependency: 
the deformation concentrates in zones as narrow as the mesh permits, indepen-
dently of any material parameter. Such pathologic response is observed here, as 
in the biaxial test simulation in Nguyen et al. (2013). In order to restore a mesh 
independent behavior in such computations, higher order constitutive models can 
be introduced, as in Chambon et al. (2001); Matsushima et al. (2002) in which a 
second gradient model is used with success.

Fig. 6  Strain localization: 2nd invariant of strain tensor. a t = 4,400 s. b t = 9,000 s. c 
t = 10,000 s

Fig. 7  Strain localization at 
t = 10,000 s
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5  Conclusion

A two-scale approach to investigate the behavior of cohesive granular materials 
has been presented, combining DEM at the micro-scale with FEM modeling at 
macroscopic level. The FEM × DEM mechanical response of a cohesive-frictional 
granular material submitted to a hollow cylinder pressurization test was analyzed 
and strain localization was detected. The results obtained allow to validate the 
approach and open new perspectives. Further developments will concern the use 
of a second gradient extension of the model in the FEM formulation, to overcome 
mesh dependency and restore objectivity of the post-localization simulations.
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