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A b s t r a c t

This article presents the multi-scale modelling of cohesive granular materials, its numerical imple-
mentation and its interesting results. At microscopic level, a Discrete Element Method (DEM) is used to
model dense grains packing. At the macroscopic level, the numerical solution is obtained by the Finite
Element Method (FEM). In order to bridge the micro and macro scales, the concept of Representative
Elementary Volume (REV) is applied, in which the average REV stress and the consistent tangent
operators are obtained in each macroscopic integration point as the results of DEM’s simulation. In this
way, the numerical constitutive law is determined through the detailed modelling of the microstructure,
and taken into account the nature of granular materials. We first elaborate the principle of the computation
homogenization (FEMxDEM) and then demonstrate the features of our multi-scale computation in terms
of a biaxial compression test. Strain localization is observed and discussed.
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1. INTRODUCTION

Numerical modelling is widely used to investigate and design the resistance of buildings or geotechnical
problems. Classically, Finite Element Method (FEM) (Zienkiewicz [1]), which is based on a continuum
approach, is applied. This method is appropriate for a wide range of applications (soil mechanics,
structures, concrete, ...). However, earth structures specifically made of granular materials are very
common (Chevalier et al. [2]). These materials are discontinuous and heterogeneous by nature. They
generate many complex mechanical responses when they are subjected to large deformations (Lanier
[3]). Unfortunately, it is difficult to realistically model the discrete nature of granular media by FEM.
It is not the case for the Discrete Element Methods (DEM) that has been especially developed to model
the granular matter at the grain scale. This specific method consists in the integration of the equations of
motion to obtain the response of an assembly of rigid particles (Cundall [4]). Thus, the granular media
is modelled at the contact scale and their discrete nature can be captured.

It is widely known that the macroscopic behaviours take its origins at the grain scale (inter-granular
contact behaviour, contact network, density, ...) hereafter called the microstructure. The mathematical
and the numerical description of a multi-scale relationship between the microstructure and the macroscop-
ic mechanical behaviour is an essential issue. Recently, several authors have proposed multi-scale
approach (Kouznetsova et al. [5, 6], Miehe and Dettmar [7, 8], Meier et al. [9]) to investigate the overall
behaviour of hetegeneous materials using mechanical informations from the microstructure. Thus, the
materials are studied at two different scales.

In this paper, we propose a multi-scale numerical homogenization approach by combining FEM and
DEM to study the behaviour of cohesive granular materials. The microstructure of the granular soil
is thus modelled by using the DEM approach on a Representative Elementary Volume (REV) made of
few grains. At the large scale (sample scale), the FEM approach is used. The idea of coupling FEM
and DEM emerged in the late 1980’s with the great advancement in computational power (Munjiza et
al. [10]). Other contributions should also be noticed (Munjiza [11], Oñate and Rojek [12], Wellmann



and Wriggers [13]). In these works, FEM is used to model zones in which small deformations occurs
whereas zones with large deformation are handled with the DEM approach. The coupling between these
two zones involves interacting contact domain.

In our work, the coupling between the FEM and the DEM is different. Whereas the overall earth
structure is modelled by a FEM approach, the constitutive mechanical behaviour used at each Gauss
points of the mesh does not come from a mathematical phenomenological law but from a numerical
behaviour computed with DEM of a REV. The micro (DEM) and the macro (FEM) scales are thus
bridged by a homogenisation process.

In fact, due to the coefficient of friction, the behaviour of granular media is not elastic and is strain
history dependent which means that the stress at some instant depend not only on the strain at that
moment but on the whole history of strain up to it. The boundary value problems (BVP) involving solids
presenting such a behaviour are therefore evolution problems. Very often, those evolutions are slow
enough so that inertial effects can be neglected and the evolution is quasi-static which means that at any
time the medium is balanced. The numerical resolution of this type of problem is usually performed
using a time stepping discretisation. In this method, the equilibrium equations are written at each time
step, and the constitutive law is integrated through a specific method adapted to the law (see for instance
Simo and Hughes [14] for elastoplasticity). That yields an "integrated" constitutive equation: εn → σn

giving the stress at the end of the step n in terms of the strain at the end of the same step and therefore
looking like an elastic, generally non linear, constitutive equation.

The problem to be solved at time step n is a nonlinear elastic-like equilibrium problem, generally
solved using the Newton’s method. The standard Newton’s method requires the differentiation of the
integrated law which leads to the notion of consistent tangent operator (for elastoplasticity, see Simo and
Hughes [14])

In the FEM × DEM approach, the macroscopic constitutive equation of the equivalent continuous
granular medium is obtained through the DEM simulation of the motion of the grains in a REV subjected
to a history of macroscopic strain. The integrated law of each time step is then directly the constitutive
equation of the continuous medium for a macroscopic strain path completely determined by the strain at
the end of the step. In this case, the numerical differentiation, which seems to be the only way to get the
consistent tangent operator of the the integrated law on a time step, poses problems, a variant of Newton’s
method is used, either by keeping the linear operator of all the time step and all the iterations equal to the
elastic one of initial REV or computing at each iteration of the Newton’s method of a given time step the
homogenized linear elastic constitutive equation of the current REV the set of contacts between grains
of which has been fixed.

The paper is organized as follows. Section 2 presents the homogenization methods to bridge the scale
between micro- and macro- level. Section 3 describes the numerical model by DEM. Some numerical
results done with the multi-scale computation (FEM × DEM) is demonstrated in section 4.

2. HOMOGENIZATION METHOD

Following the explanations given above, a quasi-static finite strain continuum formulation is considered
at the macroscopic level. The constitutive response at this level is obtained from DEM computations on
a Representative Elementary Volume (REV). The displacement gradient for a macroscopic Gauss point
is imposed on the REV associated to this point. The Cauchy stress can be computed in using a well
established homogenization formula (eq. (1)) (Weber [15]). The upscaling technique consists of using
DEM model at each Gauss point of the FEM mesh to derive numerically a constitutive response. This
framework is illustrated in figure 1.

For a given history of a macroscopic displacement gradient hkl = ∂uk/∂xl , the macroscopic Cauchy
stress σi j results from microscopic forces between grains through a homogenization formula (eq. (1)).

σi j =
1
S
· ∑
(n,m)∈C

~f m/n⊗~r nm (1)

Where S in 2D case is the area of the microstructure; f c
i and lc

j are respectively the component i of



Fig. 1. Computational homogenization scheme

the contact forces acting in contact c and the component j of the branch vector l joining the mass centre
of two grains in contact.

The numerical procedure allows us to build the constitutive law of the form (eq. (2)) that expresses
the stress as a function of the history of displacement gradient.

σ(t) = Γ
t{h(τ),τ ∈ (0, t)} (2)

For a given displacement gradient hkl , we can construct the tangent stiffness matrix:

Ci jkl =
dσi j

dhkl
(3)

Eq. (3) gives the definition of the tangent stiffness matrix. In finite deformation analysis, the stress
response requires solving a nonlinear system of equations when the mechanical behaviour is nonlinear,
which is the case for granular materials. In order to solve the non-linear system of equations, an
incremental-iterative strategy Newton-Raphson method is adopted. This requires the implementation of
a consistent tangent matrix in the numerical integration scheme. Then, the consistent tangent operators
computed from the stress state at the end of the load step are consistent with the algorithm of integration
used. Any inconsistency between the tangent operator and the algorithm of integration of the constitutive
law will spoil the quadratic convergence of the Newton-Raphson method. Moreover, the more this
operator represents the mechanical behaviour of granular media, the faster the iterative process converges
to the solution.

The consistent tangent operators can be found analytically for the simple law, but for the other
complex laws, a numerical differentiation has to be adopted.

At the macroscopic scale, finite elements are employed to solve the homogenized problem. When an
incremental linearization procedure is adopted, the matrix (eq. (3)) should be evaluated numerically. We
describe here this numerical procedure: the tangent stiffness is computed in two steps.

For an increment of displacement gradient δhkl , we perform a first step in which we compute
the stress at the end of this increment, noted σi j(δhkl). Then we consider perturbed increments of
displacement gradient δhkl + ε ·∆mn

kl . Here ε is a small parameter and ∆
mn
kl is a second-order tensor such

that its components are defined as:

∆
mn
kl = δmk ·δnl (4)

with the Kronecker symbol δmk =

{
1 I f m = k
0 I f m 6= k

. In two-dimensional case: k, l,m,n = 1,2.



Finally, the results of these two steps allow for the determination of consistent tangent operator:

Ci jkl =
σi j(δhkl + ε ·∆mn

kl )−σi j(δhkl)

ε
(5)

This procedure is performed in every time step and in every Gauss point of the macroscopic finite
element discretization. At the beginning and the end of each step, the REV is in a state of equilibrium.

3. MICROSCOPIC DEM MODEL

The numerical model of granular material behaviour is herein obtained by a classical discrete element
approach (DEM with soft-contact dynamics type) using bi-Periodic Boundary Conditions (PBC). (For
details see Radjai and Dubois [16]). A Representative Elementary Volume (REV) is associated at each
Gauss point. This REV is made of a dense packing of 400 2D polydisperse circular particles. All
grains interact via linear elastic laws and coulomb friction when they are in contact. Accordingly, the
normal repulsive contact force fel is related to the normal apparent interpenetration δ in the contact as
fel = −kn · δ, where kn is a normal stiffness coefficient (δ < 0 if a contact is present, δ = 0 if there is
no contact). In order to model a cohesive materials, a local cohesion is introduced at the level of each
pair of particles by adding an attractive force fc to fel; fc is constant for each contact. Thus, the overall
normal force for two grains in contact is fn = fel + fc. The Coulomb inequality | ft | ≤ µ · fel requires
an incremental evaluation of ft in each time step (∆ ft = kt ·∆ut , where ∆ut is the tangential relative
displacement in the contact and kt is the corresponding tangential stiffness), which leads to some amount
of slip each time one of the equalities ft = ±µ · fel is imposed (Cundall [4]). In the present study, kn is
such that κ = kn/σ0 = 1000 (Combe et Roux [17]), where σ0 is the 2D isotropic pressure. The stiffness
ratio is arbitrary fixed to kn/kt = 1. The cohesive force fc should be defined with reference to the mean
level of pressure as suggested by Gilabert et al. [18], Radjai and Dubois [16]: p∗ = fc/(a ·σ0) where a
is typical diameter of grains. So p∗ is a ratio measuring the attractive part of a contact force versus the
repulsive part due to particle interpenetration. Hereafter p∗ = 1. The inter-granular angle of friction is
µ = 0.5.

(a) (b)

Fig. 2. Biaxial by DEM on a REV contains 400 particles with PBC: (a) REV deformed. Contact forces are
displayed with the convention: the width of the lines joining the centres of two particles in contact is proportional
to the normal force. Red, green line distinguish respectively ( fc 6= 0) and ( fc = 0). (b) Macroscopic response.

A degradation of the cohesion can be taken into account by considering a reduction or vanishing of fc

in a contact when sliding or separation occurs. Here we consider the second case (vanishing cohesion),
which corresponds approximatively to a material with brittle cemented contacts.

The figure 2(a) shows an assembly of 400 particles submitted to a deviatoric loading (vertical compre-



ssion test with constant lateral stress - hereafter called biaxial test). The stress-strain response is displayed
on the Fig 2(b). Because this REV is initially dense, the volumetric strain is therefore essentially dilative

Fig. 3. Mohr-Coulomb criterion. Mohr circles are plotted with color conventions: biaxial compression at peak (in
rose), post peak (in green); biaxial extension test at peak (in blue), post peak (in violet).

The Mohr-Coulomb criterion is widely applied for cohesive granular materials. This model character-
ize the mechanical strength of materials in two parameters: a macroscopic cohesion parameter C and an
internal friction angle ϕ. These parameters can be determined from differents test, such that shear,
compression or extension test. Here we consider two biaxial tests: one in compression and the other
in extension path. Mohr circles are drawn and plotted in the figure 3. The yield surface in stress plan
of materials is described. As shown on this figure, two parameters are determinated at different states
which characterize the materials’s strength at particular moment such as peak stress and post peak (for
large vertical strains) when the degradation of cohesion is observed at almost contacts. At peak stress,
from the circles, we can obtain ϕ = 25o and C/σ0 = 0.3. The circles at post peak points show clearly
the vanishing of macroscopic cohesion when the local contact cohesion is lost but the internal angle of
friction remains the same. The internal angle of friction is 25o.

4. MULTISCALE FEM × DEM SIMULATION

The FEM × DEM approach was implemented in the FEM code Lagamine (Charlier [19]) which is able
to manage large strains. The implementation involved significant modification in the original code, but
it essentially consisted in adding the DEM modelling as a constitutive numerical law.

Biaxial experimental tests have been performed in Grenoble for a long time (Desrues [20]). Many
test results are presented in the overview paper by Desrues and Viggiani [21]. The principle of the test
named shf03, lubricated at two surfaces and showing two symmetric shear band is now chosen to be
modelled by our multi-scale tool. Using the symmetry, only one-fourth of the test specimen is modelled.
This test is carried out in two steps: isotropic compression until σ1 = σ2 = σ0 and then loading on the
upper surface to reach the desired axial deformation. During the axial loading, the lateral pressure is
kept constant and equals σ2 = σ0. (For more details about the experimental setup, we refer the readers
to Desrues and Viggiani [21]).

The initial FE mesh of the problem and the boundary conditions are systematically given in the figure
4. The mechanical problem is discretized spatially using elements Q8 (8 nodes per element). The number
of integration Gauss point is chosen at 4 for each element (Fig. 5 left). This choice is to work with a
degree of interpolation less strictly than the number of the nodes, in order to improve the convergence
of the numerical scheme and avoids blocking a problem due to the spatial discretization. In this study,
three different types of mesh with the same boundary condition are used. The first and the second are
structural mesh, which consists of 128 elements, and 64 elements Q8. The last one is a non-structural



Fig. 4. Spatial discretization by FE at macro-scale: (a,b) structural mesh and (c) non-structural mesh.

Fig. 5. Element Q8 and REV initially similar at each Gauss point.

mesh of 106 elements Q8 (Fig. 4). At micro-scale, a REV of 400 particles, initially similar, is used at
each gauss point. At the initial state, the cohesive force exist at all the contacts (which is represented by
a red line joining the centres of two grains in contact) (Fig. 5 right).

4.1. Macroscopic results

The simulated behaviour via the FEM × DEM approach is shown on the figure 6(a) while the right
figure (Fig. 6(b)) gives the comparison between our methods and the results come from DEM simulation
on a single cell with PBC. This figure presents the deviatoric stress q = σ1−σ2 as a function of axial
deformation ε11. The first remark is that this mechanical behaviour is typical of what is classically
observed on a laboratory drained triaxial test on dense cemented sands, or weak sandstones: from the
isotropic state, the specimen is first deformed homogeneously; meanwhile, the deviatoric stress q =
σ1−σ2 increases until it reaches a peak corresponding to the maximum strength of the materials. Then,
one can observe a softening behaviour (stress drops down) until q = σ1−σ2 reach a plateau. Concerning
the response of the DEM’s simulation: as the number of particles increases, the macroscopic response
bends generally to a final solution (from blue (400 particles) to green (22500 particles) and orange (40000
particles) curve in the figure 6(b)). But in fact, we cannot obtain the FEMxDEM response with this type
of simulation. In addition, we observe that the solutions by different meshes (by FEM × DEM) is not
unique after the peak (Fig. 6a).

The softening (post-peak response of the specimen) is more pronounced if compared with purely
frictional models (not shown here), for two reasons: one is that the degradation of the cohesion comes in



(a) (b)

Fig. 6. Macroscopic response of multi-scale FEM × DEM computation. Comparison between FEM × DEM and
DEM methods using different levels of discretization for FEM and DEM: (a) DEM model with 40000 particles
versus multiscale model with different numbers of elements; (b) multiscale model with 128 elements versus DEM
models with different numbers of particles.

a. 64 elements b. 128 elements c. 106 elements

Fig. 7. Deformed of structure at ε11 = 3%.

addition to the other degradation mechanisms like dilatancy and changes in contact orientation distributi-
on; the second reason is strain localization. Around a peak stress, the strain suddenly localizes into
shear band. It is well known in FEM modelling that softening constitutive models lead to localization
in the response of the boundary value problems (BVP). In experimental tests, localization occurs as well
(Desrues and Viggiani [21]), and the seek for a proper modelling of strain localization has been a crucial
research objective for three decades now.

We observe here, not surprisingly, that localization occurs as well in the multi-scale FEM × DEM
approach. In the figure 7, the local distortion of the mesh shows clearly a shear band in the specimen,
confirmed on the figure 8 by the map of the second invariant of the deviatoric strain. Due to strain
localization, deformation is observed to concentrate in this narrow zones (called shear band) (Desrues
and Chambon [22]); a given increment of top boundary displacement is no more accommodated by an
overall strain in the whole specimen, but by a much faster shear deformation process in the band. This is
the reason for a much faster softening of the specimen response than the REV response.



a. 64 elements b. 128 elements c. 106 elements

Fig. 8. Second invariant of strain tensor at ε11 = 3%.

4.2. Microscopic analysis

In order to highlight the advantage of our methods and to understand the origin of macroscopic phenome-
na, which comes from microscopic evolution, in this section, we propose to analyze the stress evolution
in various Gauss points at different location in the mesh. The mesh of 128 elements Q8 is chosen for this
analysis. The focus is on the Gauss points into Q8 no 46 and Q8 no 52 (see Fig. 7b). The element 52 is
in the shear band whereas the element 46 is far from the shear band, in a homogeneous zone.

(a) (b)

Fig. 9. Microscopic analysis: (a) Principal stress in elements 46 and 52. (b) Principal direction in element 52. ε11
is the equivalent overall axial strain for the specimen.

Figure 9a shows the evolution of principal stresses (PS hereafter) (minor and major) in the two
elements. As for the major PS, we observe that their respective evolutions diverge once the maximum
shear strength is reached. The stress variations are rather smooth in element 46 and noisy in 52. Both
46 and 52 show stress reduction, which is consistent with the softening of the specimen as a structure:
despite the degradation of the material’s properties is concentrated in the shear band, it results in a fall
of stress in the whole specimen as soon as the band becomes the overall failure mechanism. The minor
PS shows the same trend with respect to smoothness. Within the shear band, not only PS values but also
PS directions (Fig. 9(b)) show erratic values. Clearly, the shear band becomes the only active part of
the specimen once localization has started; in this active zone, the deformation process is intensive and



a. Gauss 1 b. Gauss 2 c. Gauss 3 d. Gauss 4

Fig. 10. REV deformed at Gauss point of element 46 ε11 = 3%. (See Fig. 2 for color convention).

a. Gauss 1 b. Gauss 2 c. Gauss 3 d. Gauss 4

Fig. 11. REV deformed at Gauss point of element 52 at ε11 = 3%. (See Fig. 2 for color convention).

produces large micro-structural reorganization with severe scattering in the local stress.
In figures 10 and 11, the REV at deformed state are plotted. All the Gauss point have the same initial

configuration (Fig. 5) but the deformed configurations becomes quite different at the end. All the REV at
element 46 remain similar to the initial state with only one or two contact losing cohesion, while the REV
at element 52 is subjected to a complex loading at each REV (both compression and shear loading, see
the shape of REV) while a degradation of cohesion forces is observed throughout these REV (contacts
without cohesion are illustrated by the green line). We can conclude that in the shear band zone, the
strain localization leads to a generalized inter-granular cracking.

5. CONCLUSIONS

A two-scale approach to investigate the behaviour of cohesive granular materials has been presented,
combining DEM at the micro level with FEM modelling at macroscopic level. A numerical homogenizat-
ion method is considered to bridge the gap between different scales. At small scale level, kinematics
condition is applied at each REV with PBC. The mean stress is recovered together with the consistent
tangent operators to construct the macroscopic constitutive law. This new method allows us to obtain the
overall behaviour of geomaterials together with the micro mechanism inside REV at every point in the
FEM mesh. The DEM code is successfully implemented in a large strain finite elements code Lagamine.
Using this numerical tool, some results from biaxial test simulation were presented and analyzed. Strain
localization has been observed. The mechanical response of cohesive granular materials was investigated
both at the macro- and microscopic level. Moreover, local stress evolutions, the inter-granular cracking
at micro level (REV cell) have been highlighted to understand the origin of the macroscopic behaviour.
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