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Abstract. In granular materials, it is not so simple to assess experimentally the contact forces. Photoelasticity is generally
used for this purpose but this technique involves some constraints that may limit its use. We propose a different solution, which
implements both the digital image correlation (DIC) technique and the non-smooth contact dynamics (NSCD) formalism. In a
nutshell, the technique aims to find a set of contact forces mechanically admissible given a set of measured contact velocities.
We used photographs of a simple shear test of a two-dimensional analogue granular material (about 1000 aluminum rods) to
apply the solution, and we showed that valuable information about the contact forces can be extracted from the kinematic field
provided that no major rearrangement occurs for at least five image shots.
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INTRODUCTION

The very peculiar nature of force transmission in gran-
ular materials is well known today. The study and the
experimental measurement of these forces are thus of
primary importance. In practice, there is few research
team that are committed to this task. On the other side,
the study of the grain-scale kinematics of these materials
is most widespread. Particularly, the device 1γ2ε which
is basically a two-dimensional parallelepiped that allows
for any quasistatic straining on Schneebeli analogue ma-
terials, was used to study, for instance, the structure evo-
lution under complex loading path [1, 2].

The experimental method most commonly used to de-
termine the contact forces is photoelasticity [3]. Unfor-
tunately, this method cannot be applied with the 1γ2ε

device which makes use of 6 cm long cylindrical rods.
The picture (tension lines) of stress distribution within
the rods would be inaccurate due to possible misalign-
ment of the quite long contact lines.

A much less common solution was initiated by An-
drade and Avila [4]: the granular element method GEM.
It is an analytical method which is able to determine the
contact force acting on a volume (a rod surface) from the
knowledge of the stress field and one force at least on its
boundary. Assuming a constitutive model, the stress field
can be determined from strain field which is itself deter-
mined from DIC displacements. Unfortunately, with this
approach, the number of rods in the system is limited
since each rod surface has to be sufficiently discretized,
and the measured displacement field is a noisy signal
that need to be smoothed (not obvious when dealing with
abrupt variations due to the confinement of strains at the
vicinity of contact points).

We thought about yet another solution based on two
techniques: the digital image correlation (DIC) tech-
nique to determine the relative velocities at contact lev-
els, and the non-smooth contact dynamics (NSCD) tech-
nique to find a set of contact forces both compatible with
the rod kinematics and the overall loading. Despite a pos-
sible non unicity of solution inherent to the NSCD, we
expect that, even if several sets of contact forces are com-
patibles, they all share the same features – at least from
a statistical point of view. The combined use of displace-
ment measures with an implicit resolution of forces was
conceived thanks to the recent development of an accu-
rate DIC technique – so called particle image tracking
(PIT) – adapted to the non-smooth kinematics involved
of a collection of grains, which is detailed in another pa-
per of the present proceeding (Powders & Grains 2013).

BASICS OF NSCD

The NSCD method is described in depth in the litera-
ture, e.g. [5, 6, 7, 8]. As explained in [8], an implicit
time-stepping scheme can be derived from a consistent
description of the dynamics at the velocity level. We will
however not enter into details here, but rather highlight
the key aspects involved in this approach, in the particu-
lar context of its use as an indirect method of force deter-
mination with experimental data.

Within the scope of the NSCD, the time interval δ t
represents a unit of time during which velocity jumps
can occur. The challenge of the problem is to predict,
from a given configuration (connectivity and full kine-
matics of grains), the contact forces ~f = fn~n+ ft~t over
the elapsed time between each photographs. It is impor-



tant to stress that contact forces used in the following
correspond to filtered values of force impulses – that
expresses as the product of force by time – during a
time interval δ t. It is obviously not possible to capture
the force variations during the elapsed time δ t between
two consecutive acquired photographs (typically, a few
tens of seconds); these periods are thus “blinded peri-
ods”. As a consequence, since the forces assessed are
associated with δ t, and thus on the continuous-shooting
speed, their informative content is poor in the cases of
non-persistent contacts corresponding to successive col-
lisions or rearrangement events. Fortunately, long-lasting
contacts should withstand quasistatic forces that are not
very sensitive to δ t.

As the forces, the relative velocity between grains also
varies within the blinded periods. This lack of informa-
tion has been accounted for in the early development of
the NSCD by introducing the formal velocity. It corre-
sponds to weighted average between two moments: vk =
ηv−k +(1−η)v+k , where subscript k stands for normal (n)
or tangential (t) direction, η is the weight factor, v−k and
v+k correspond to the relative velocities at the beginning
and the end of a time increment. If we set the restitution
coefficient regardless of the direction k as ek = −v+k /v−k
for binary contact, η reads: η = ek/(1+ ek). A restitu-
tion coefficients is physically limited in the range [0 1],
which makes the weight factor η defined in the range [0
0.5].

The equation of dynamics is formulated by a single
contact equation – in which velocity jumps replace the
accelerations – at the contact level. It formally reads:(

fn
ft

)
=W−1

(
vn/[(1−η)δ t]+an
vt/[(1−η)δ t]+at

)
(1)

where W is a matrix of inverse reduced inertias that de-
pends only on the contact geometry (i.e. contact position
and normal orientation) and inertia parameters of the in-
volved grains. The values of an and at depend on the left-
limit velocities v−k and the surrounding forces, i.e. the
other forces acting on the grains implied in the contact;
Figure 1.

In addition, the method implies in its generic formu-
lation two basic kinematic constraints when the discrete
elements are in contact:

1. The Signorini conditions (velocity version) stating
that the normal force fn is repulsive or null when
the relative normal velocity vn between two grains
is zero. Otherwise, fn = 0.

2. The static friction implying a coefficient µ limiting
the friction force ft by ±µ fn independently of the
sliding velocity vt (excepted its direction). In case
of non-sliding contact, ft can take any value in the
interval [−µ fn ; µ fn].
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FIGURE 1. Two grains in contact and its “surrounding con-
tacts”. The method consists basically in finding, over all the
contacts of a packing, the forces that obey both the dynamical
equilibrium of single contact configurations and the kinematic
constraints.

At each time step, all velocities and contact forces
must be resolved by taking into account, simultaneously,
all kinematic constraints implied by enduring contacts. It
practically consists in looping over the contacts, comput-
ing the contact forces by setting a formal velocity equal
to zero in Equation (1), and replacing inconsistent force
values by a value that obey the kinematic constraints:

fn < 0 7→ fn = 0
ft <−µ fn 7→ ft =−µ fn

ft > µ fn 7→ ft = µ fn

(2)

For a given contact, the single contact problem is the con-
sideration of both the dynamic (Equation 1) and kine-
matic constraints (Equation 2). We use the nonlinear
Gauss-Seidel method to solve each single contact prob-
lem, with other contact forces being treated as known
(see Figure 1), and iteratively updating the forces until a
given convergence criterion is fulfilled. The iterations are
stopped when the forces are stabilized, that is, when the
force variation between successive iterations divided by
the current force is within a prescribed precision criterion
ε f for each contact.

FEASIBILITY STUDY

Reliability of NSCD was already demonstrated in the
past. One can easily predict that the application of the
method with experimental data will give result any-
way. As a consequence, to use the NSCD in the inverse
method proposed herein, the first relevant question is
how the set of forces is affected by inaccuracies inherent
in experimental measurements and very large lag-times
in the continuous-shooting procedure.



Experiments and data extraction

The two-dimensional (2D) equivalent media used
within the 1γ2ε apparatus was made of 6 cm long alu-
minum rods; Figure 2. We performed a simple shear test
with a constant vertical pressure σy = 50 kPa, corre-
sponding to a single loading cycle with an amplitude of
15 deg. at constant shear rate γ =±4.8×10−3 deg. s−1.
This shear rate was chosen so that the loading is qua-
sistatic according to the inertial number criterion [9].

In order to identify the centers of “circular grains”
and track them, a pattern was painted on the front side
of each rod with black speckle onto a white background
(see inset in Figure 2). The center position together with
the solid rotation of each grain are followed throughout
the test by means of the PIT technique [10]. The posi-
tions are thus assessed with a precision of about 10 µm.
To identify the positions of the contact points and the
corresponding normal directions, we used a simple geo-
metric rule that involves the center positions and radii of
each rod pairs. A slight variation in all radii was used as
control parameter to tune the connectivity (and its evolu-
tion) according to familiar and specific features of granu-
lar packings (in particular, coordination number close to
4). When applying the NSCD, the force solution should
be particularly sensitive to the properness of the contact
point identification. We paid therefore a particular atten-
tion to this automatic procedure by comparing its result
with a solution determined manually for a few images.

Anyway, the sources of errors are twofolds: (1) inac-
curacies in input data, (2) wrong choice of contact pa-
rameters. To overcome these sources of errors, a sensi-
tivity study is required. We do not present this study in
this short communication but rather a first outcome that
shows the applicability of the method. According to this
goal, we did not focus, at first, on the contact parameters
(η and µ). The parameter η was set to zero since most
contacts persist. The friction coefficient µ was roughly
estimated to 0.25 by performing some experiments.

A first outcome

The method was tested with two different boundary
conditions : (1) measured velocity imposed for all bound-
aries, (2) constant pressure σ imposed on the top and
measured velocity imposed elsewhere. The data used
with the first condition come directly from PIT measures
which are quite accurate (if compared with those from
sensors), the drawback being a loss in force-scale. On the
other side, the second condition should allow the con-
tact forces to scale with the force imposed on the top
plate. We checked that the solutions obtained with both
boundary conditions were similar (in the “uniform scal-

ing” sense). Since the force sensor were initialized with
the sample in place, we did not account for the gravity.

Figures 3(a) and 3(b) show different patterns of the
contact force network obtained after the convergence cri-
terion is fulfilled, the initial forces being set to zero.
There exists a patent distinction between solutions that
look plausible and pretty consistent and those that cer-
tainly are not. To a large extent, the latter must be due
to the vagueness of the experimental inputs. Even for ac-
ceptable solutions – which are fewer – nothing guaran-
tees they are the appropriate ones.

With the NSCD, although uniqueness of the solution
at each time step is not guaranteed, initializing each step
with the forces calculated in the preceding step makes
the variability of admissible solutions shrink to the nu-
merical resolution. We decided to use the same strategy
to overcome the problem of inconsistent solutions. The
results showed the expected behavior after about 5 im-
ages (or steps) as shown in Figure 4: most patterns of
force network seem consistent and evolve slowly from
one image to another, excepted for some particular mo-
ments where sudden (cooperative) rearrangements take
place. In these cases, the initial guess must be reset to
the zero-forces configuration, and the 5 following im-
ages are still required to obtain consistent solutions. To
summarize, the contact forces are in principle extractable
from a series of consecutive images corresponding to a
period without sudden rearrangements. From a quanti-
tative viewpoint, it is interesting to notice that macro-
scopic friction angles obtained from both experimentally
recorded and identified forces, were about the same. Sim-
ilarly, satisfactory agreements were obtained for the prin-
cipal directions of the stress tensor, and the distribution
of normal forces was consistent: large extent of the forces
(from 0 to 5 times the mean value), exponential tail, and
a plateau of weak forces that reflects the anisotropy of the
packing mainly due to the nearly monosized distribution
of grains [11].

CONCLUDING REMARKS

We presented a novel technique to assess the contact
forces involved in a slowly strained granular packing.
This technique, which is at an early stage of develop-
ment, seems promising. It is worth noting that a quanti-
tative estimate of the static forces is possible although
multiple photographs of close but different configura-
tions are required. However, since the method combines
experimental data with a numerical resolution, an out-
standing issue will be to test its robustness with respect
to the input data that pertain unavoidable inaccuracies. A
sensitivity analysis needs to be conducted to address this
question. We also plan to test the method on synthetic
data that will be generated by means of discrete element
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FIGURE 2. The apparatus 1γ2ε in two different configurations during a simple shear test: (a) γ = 0 degree; (b) γ = 15 degree.
The sample is a 2D granular assembly of 1172 aluminum rods (diameters equal to 14, 16 and 22 mm), enclosed by a rigid frame
initially rectangular (0.5 m × 0.6 m). Inset: a view of the speckle pattern painted on the rod sides, required to track their positions
and rotations.

a)

b)

FIGURE 3. Typical maps of contact forces initially set to
zero at the beginning of the iterations: (a) a pathological case
mainly due to inaccurate inputs; (b) a solution that seems more
consistent.

simulations based on an explicit integration scheme.
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