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Abstract. The paper presents a FEMÍDEM two-scale modeling of cohesive granular materials. At the microscopic 
level, a Discrete Element Method (DEM) is used to model the granular structure (rigid disks). At the macroscopic level, 
the numerical solution of a boundary value problem is obtained via a Finite Element Method (FEM) formulation. In 
order to bridge the gap between micro- and macro-scale, the concept of Representative Volume Element (REV) is 
applied: the average REV stress and the consistent tangent operators are obtained in each macroscopic integration point 
as the results of DEM simulation. The numerical constitutive law is determined through the DEM modeling of the 
microstructure to take into account the discrete nature of granular materials. The computational homogenization method 
is first described and then illustrated in the case of a biaxial compression test.  
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INTRODUCTION 

Granular materials are discrete and heterogeneous. 
One way to model earth structures with these materials 
is to use Finite Element Method (FEM), which is 
based on a continuum media assumption. Un-
fortunately, this method cannot realistically model the 
discrete nature of soils.  In recent years, many authors 
have proposed multi-scale approach [1,2,3] to 
investigate the behavior of materials by using 
informations from the micro level. By this way, the 
materials are studied at two different scales. By 
introducing the response of the grain scale 
microstructure, a multi-scale approach does not require 
any phenomenological constitutive law at the 
continuum scale (FEM-Gauss points).  
Based on previous works [4,5], we present in this 
paper new improvements of our two-scale modeling 
approach combining FEM at the macro-scale and 
DEM at the micro-scale.  

MULTI-SCALE COUPLING METHOD 

A two-scale numerical homogenization approach 
by FEM-DEM is considered, Figure 1. At the small-
scale level (Gauss points), the constitutive equation 
! = F(")  is numerically obtained by a DEM on a 
Representative Elementary Volume (REV). A gradient 
displacement tensor is applied to REVs assigned to 
each Gauss points. The stress response of the REV is 
computed using the very classical homogenization 

formula [6] ∑
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where S is the volume 

of the REV (area in 2D). fi
c  and li

c  are respectively 
the component i of the contact forces acting in contact 
c and the component j of the branch vector l joining 
the mass centers of two grains in contact. 

 
 

FIGURE 1.  Computational homogenization scheme 
 

At the macroscopic level, a numerical solution for the 
Boundary Value Problem (BVP) is obtained using 
FEM. To bridge the scales between FEM and DEM, 
the definition of consistent tangent stiffness matrix 
Cijkl  may be expressed as a function of displacement 

gradient d! ij =Cijkl.
!duk
!xl

. The upscale technique 

consists of using the discrete model at each Gauss 
point of the FEM mesh to derive numerically the 
constitutive response.  
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MICRO-SCALE (DEM) MODEL 

The numerical model of granular materials 
behaviour is herein obtained by a classical Discrete 
Element Method approach (soft-contact dynamics 
type) using Periodic Boundary Conditions [7] (PBC). 
A unique Representative Elementary Volume (REV) is 
associated to each Gauss point. This REV is made of a 
dense packing of 400 polydisperse disks. All grains 
interact via linear elastic laws and Coulomb friction 
when they are in contact [8]. Accordingly, the normal 
repulsive contact force fel  is related to the normal 
apparent interpenetration δ of the contact as fel = kn !! , 
where kn  is a normal stiffness coefficient (! > 0  if a 
contact is present, ! = 0  if there is no contact). The 
tangential component ft  of the contact force is 
proportional to the tangential elastic relative 
displacement, with a tangential stiffness coefficient kt . 
In order to model cohesive-frictional granular 
materials, a local cohesion is introduced at the level of 
each pair of particles by adding an attractive force fc  
to fel ; fc  is constant for each contact. The overall 
normal force for two grains in contact is fn = fel + fc . 
The Coulomb condition ft ! µ. fel  requires an 

incremental evaluation of tf  in each time step, which 
leads to some amount of slip each time one of the 
equalities ft = ±µ ! fel  is imposed. In that study, kn  is 
such that ! = kn " 2 =1000  [9], where ! 2  is the 2D 
isotropic pressure. The stiffness ratio is k n kt =1 . The 
adhesion force cf  is defined by reference to the mean 
level of pressure as suggested by [10]: 
p* = fc a !! 2( )  where a  is the typical diameter of 

grains. So p*  is a ratio scaling the attractive part of the 
mean stress in the sample with the repulsive part due 
to particle overlap. Hereafter, p* =1 . The intergranular 
angle of friction is µ = 0.5 . 
A degradation of the cohesion is taken into account by 
considering a vanishing of fc  at a contact when sliding 
or separation occurs. This correspond to a simple 
model of granular materials with brittle cemented 
contacts. 
The Figure 2 shows a REV of 400 particles with PBC 
submitted to a deviatoric loading (biaxial test). The 
stress-strain response is displayed on the Figure 3.  
Because this small assembly of discs is initially dense, 
the volumetric strain is here essentially dilative.  

 

 

FIGURE 2. A REV of 400 particles with PBC. The contact 
forces are displayed with the following convention: the 
width of the lines joining the centers of two particles in 
contact is proportional to the amplitude of the normal force. 
Red, green, blue lines distinguish respectively compressive 
forces with cohesion fn > 0, fc < 0( ) , cohesionless contacts 

fn > 0, fc = 0( )  and attractive contacts fn < 0, fc < 0( ) . 

 

 

FIGURE 3.  Mechanical response of the REV of 400 
cohesive-frictional discs submitted to a biaxial loading. The 
blue curve corresponds to the evolution of the normalized 
vertical deviatoric stress (q /! 2 ) versus the vertical strain 

!11 . The green curve display !vv = tr!  evolution along the 
biaxial compression. 

FEM Í  DEM SIMULATION OF A 
BIAXIAL COMPRESSION 

The FEMÍDEM approach was implemented in the 
FEM code Lagamine [11] that is able to manage large 
strains. The implementation involved significant 
modification in the original code, but it essentially 
consisted in adding the DEM modeling as a 
constitutive numerical law.   
This section presents the results obtained by the 
FEMÍDEM approach for the simulation of a biaxial 
test (vertical compression at constant strain rate and 
constant lateral stress) in plane strain conditions. The 
results presented here were obtained with on a 
granular sample modeled at the continuous macro-
scale by a mesh of 128 finite elements (Q8 – 



rectangular elements of 8 nodes) with 4 Gauss 
integration points, Figure 4. At the start of the 
computation, the REV is strictly the same for each 
Gauss point. 

 

 

FIGURE 4.  Geometry of biaxial test 

Macroscopic results 

The macroscopic behavior obtained via the 
FEMÍDEM approach is shown on the Figure 5. This 
mechanical response is typical of that is classically 
observed on a laboratory drained triaxial test on dense 
cemented sands, or weak sandstones: from the 
isotropic state, the deviatoric stress 

21 σσ −=q  
increases until it reaches a peak corresponding to the 
maximum strength of the materials. Then, one can 
observe a softening behavior until the 

21 σσ −=q  
reach a plateau for large strains. The softening (post-
peak response of the specimen) is more pronounced 
than in purely frictional materials, for two reasons: one 
is that the degradation of the cohesion comes in 
addition to the other degradation mechanisms like 
dilatancy and changes in contact orientation 
distribution. The second reason is strain localization. It 
is well known that in FEM modeling, softening 
constitutive models lead to localization in the response 
of the BVP. In experimental tests, localization occurs 
as well. The modeling of strain localization has been a 
crucial objective in the last three decades. We observe 
here, not surprisingly, that localization occurs as well 
in the double-scale FEM Í DEM approach. In the 
Figure 6-left, the local distortion of the mesh shows 
clearly a shear band in the specimen. This is confirmed 
on the Fig. 6-right by the map of the second invariant 
of the strain tensor. Due to localization, the strain 
process concentrates in this narrow band. A given 
increment of displacement on the top boundary is no 
more accommodated by an overall strain in the whole 

specimen, but by a much faster shear deformation 
process in the shear band. This is the reason for a 
much faster softening of the specimen response than 
the REV response. 
[12] shown that mesh-dependency arises for 
localization process in FEM approach. Other mesh 
sizes have been tested (not presented here) confirming 
mesh dependency. A regularization method should be 
used to restore objectivity in that respect. Enriched 
media can be considered at the macro-scale, however 
this question is out of the scope of the present paper.  

 

 

FIGURE 5.  Biaxial test response. Comparison of DEM and 
FEM-DEM methods.  

 

 

FIGURE 6.  Biaxial compression test: deformed structure 
(left) and map of the second invariant of strain tensor (right) 
showing shear localization (for !11 = 3%  of axial strain).  

Microscopic Analysis 

In this section, we propose to analyze the stress 
evolution for various Gauss points at different location 
in the mesh. We focused on the Gauss points of Q8 
n°46 and n°52 (see Fig. 6). The element 52 is chosen 



in the shear band whereas the element 46 is far from 
the shear band, in a “homogeneous zone”.  

 

 

FIGURE 7.  Elements 52 and 46, 1st Gauss point: principal 
stress (minor and major) during the test.  

 
The Figure 7 shows the evolution of Principal Stresses 
(PS) (minor and major) in the two elements. As for the 
major PS, we observe that their respective evolutions 
diverge once the maximum shear strength is reached. 
The stress variations are rather smooth in element 46 
and noisy in 52. Both 46 and 52 show stress reduction, 
which is consistent with the softening of the specimen 
as a structure. The minor PS shows the same trend 
with respect to smoothness. PS directions (not shown 
here) show erratic values in the shear band. Clearly, 
the shear band becomes the only active part of the 
specimen once localization has started; in this active 
zone, the deformation process is intensive and 
produces large micro-structural reorganization with 
severe scattering in the local stress.  

CONCLUSION 

A two-scale approach to investigate the behavior of 
cohesive granular materials has been presented, 
combining DEM at the micro-scale with FEM 
modeling at macroscopic level. The FEMÍDEM 
mechanical response of a granular material submitted 
to a biaxial response was analyzed both at the 
macroscopic and microscopic scales. Strain 
localization has been observed. Moreover, local stress 
evolutions have been presented and analyzed. The 
results obtained allow to validate the approach and 
open new perspectives. Further developments will 
concern the use of a second gradient model for the 
FEM [13] to avoid mesh dependency. Moreover, a 
“double cohesion scale” model developed to manage 
assemblies of cemented grains will be used to model 
sandstones.  
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