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Abstract. Discrete element method (DEM) simulations usingqukc boundary conditions
and molecular dynamics are conducted on a fricligremular media. Two dimensional strain
controlled biaxial tests are carried out on an abkdg of circular particles interacting via
elastic contacts and Coulomb friction. The spatatrelations that take place within the
deformation field along the loading path are trackg a scaling analysis of the continuous
strain rate field. This method allows us to disctes degree of strain localization occurring
throughout the test. The analysis of the correfalemgth in the early stages of macroscopic
deformation leads to the identification of two dist behaviors. First, a divergence of the
correlation length on the first deformation invatiai.e. the divergence, is reported at the
onset of macroscopic dilation. This suggests aerpmétation of the contraction peak as a
critical point. Secondly, an increase of the catieh length on the second deformation
invariant, i.e. the shear, is also observed befwgeak load. However, saturation remains on
the scaling law. We argue that this second behagioassociated to macroscopic shear
banding: our analysis accurately gives its outbi@akhe stress versus strain curve. Finally, a
dependence of the correlation length as a funaiiotihe deformation window considered is
reported. This shows that scaling properties withien deformation field emerge from long
range interactions within an assembly of rigidtfanal particles.
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1 INTRODUCTION

Discrete element numerical simulations (DEM) of nydar materials show an
extraordinarily rich behavior emerging from simpteechanical interactions at the particle
scale.

As shown by Radjai and Roux [1], a homogeneous osaopic loading applied to a
granular material constituted of a random asserablygid circular frictional particles leads
to the development of large, non-gaussian partielecity fluctuations at small time scales,
as well as a power law decay of the spatial povpacisum of the velocity field. This
indicates long-range correlations. Indeed, hetereges distribution of contact forces on
scales much larger than the typical particle s&8][induces collective motions of particle
assemblies, i.e. long range correlations, to opemaithin granular media. Thus, to
characterize the mechanical fields (stress, stmithin granular materials from the particle
scale to the large scale is of first interest ideorto describe and understand properly their
macroscopic mechanical response.

Following this route, the objective of this papgto investigate the spatial correlations
that take place within the deformation field of cfronal granular materials during
compressive loading. Can classical macroscopiafeatsuch as dilatancy or shear banding
be associated to specific scaling properties oas®ciated strain field?

The mechanical behavior of disordered cohesive (ian granular) materials, and
specifically their approach to final failure, haselm widely investigated by the statistical
physics community in recent years (e.g. [4-5]) fraomerical models such as the random
fuse model, the tensorial random spring model ergfogressive damage model [6]. Finite
size scaling in the power law distributions of avedhe sizes$ (defined as the number of
broken fibers, bonds or damage events) and enekieave been reported, providing an
argument in favor of a critical phase transitioterpretation of failure. Recently, from a
spatial correlation analysis of damage events dsas@ multi-scale analysis of the strain-rate
field, Girard et al. [6] reported a divergence bé tcorrelation length as approaching the
failure, another strong argument for the critidadu@cter of failure.

Following this work, we perform here a coarse grananalysis on the continuous
incremental strain field of granular materials aveyal stages of DEM simulations. This
analysis allows a quantitative estimation of thgrde of strain localization that take place
within the media. Then, the results are interpretethe framework of statistical physics in
order to determine if the macroscopic mechanicali®s such as the onset of dilatancy or the
shear strain softening can be associated to spac#iing laws of the strain-rate field.

2 GRANULAR MODEL
2.1 Microscopic Constitutive laws

The discrete element method involved is one of rtiest widely used, Molecular
Dynamics (MD) [7]. Particles motions are time-dittzed with a *§ order predictor-corrector
scheme. All grains interact via linear elastic lasavsed Coulomb friction when they are in
contact: the normal contact forfeis related to the normal apparent interpenetrafiom the
contact a¥,, = k, 8, wherek,, is a normal stiffness coefficiend ¢ 0 if a contact is present,
6 = 0 if there is no contact). The tangential comporfgmf the contact force is proportional
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to the tangential elastic relative displacementhwai tangential stiffness coefficieht. The
Coulomb conditionf;| < u f,, requires an incremental evaluationfofor each time step,
which leads to some amount of slip each time onth@fequalities; = u f,, is imposed. In
this study, k,, is such thatK = k,/o; = 1000 [8]. The stiffness ratio ig, = k; = 1.
Granular assemblies are made of two-dimensional dgcular grains. Their diameters are
uniformly distributed betweeD, andDyax = 3Dmin. Periodic boundary conditions are used
[7]. After an isotropic compression without integular frictionp = 0, dense samples of
initial porosity n; = 0.15 are submitted to a vertical compression with kegphe lateral
stresso; constant (biaxial tests). The tests presentelisnstudy consider = 1. The vertical
constant strain rat§ is chosen such that mechanical transformatiorbeasssumed as quasi-
static. For thaté, is obtained by setting= 5.10~>, wherel is the inertial number [8]. Under
these considerations, the increment of deformafigrassociated tone time step integration
is §e; = 8.5.107°.

Figure 1 shows a typical macroscopic stress staine obtained on a sample made of
45000 grains. At the beginning of the test, a @wting regime is observed on the volume
variation up to an axial strain of about 0.29% esponding to the onset of dilation: since
dense samples are considered here, grains reamangein the early stages of deformation
are limited and contraction is mainly observed beeaof an elastic contact description
between particles [9]. The inelastic deformatiorthe contractant regime is due to loss of
contact and Coulomb friction between particles.eAfthe peak of contraction, the sample
dilates continuously. A maximum shear stress igiabtl around 0.65% of macroscopic axial
deformation.
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Figure 1:Macroscopic response of a sample of 45000 gram® @ to 4% of deformation. The volume
deformation is plotted in green and the macroscapiear stress in blue as a function of axial macopsc
deformation. The onset of dilation is observed ambty = 2.9.10~2 and the onset of softening arousd=

6.5.1073. Bold red circles indicate, on the macroscopicastsiress curve, stages where configuration outputs
are done. From these 4 configurations, which ext@bnterval windows numbered from 1 to 3, asseclat
incremental strain fields are computed and plotbadigure 2. The deformation window size is theedor all
the three interval windows and is equalitq,, 5. = 2.4.1073.
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2.2 Macroscopic shear banding

Many experiments and theoretical works have bemrmducted in the past in order to
describe and understand the onset of macroscaim $bcalization within shear bands in
geomaterials. Important insights into the mecharaésmacroscopic localization were
obtained from the continuum analysis of its inaeptas a bifurcation in the constitutive law
[10]. In discrete materials such as soils, the lipation of deformation into thin zones of
intense shearing is a phenomenon commonly obséivedi4]. It is also assumed that, in the
early stages of deformation, homogeneous deformasiambserved, while patterns of strain
localization appear at some point throughout tist, igenerally at the peak load or slightly
before [11]. It has been reported that these dberadls can form and disappear as deformation
proceeds after the peak load [11].

These features are qualitatively observed within BEM simulations. Figure 2 shows
the incremental shear strain fields (computed usiggation 2, see section 3) obtained at
different stages of the loading by integrating ginains displacements over large deformation
windows equal tase,, . = 2.4.107%. We can see that, while heterogeneous, the incraie
shear strain field at the beginning of the tegjuife 2.1) does not show any clear macroscopic
structure. However, as loading goes on, a macrasdopalization materialized by a shear
band that spans the entire sample can be distimgnlislightly before the peak load (Figure
2.2). Then, these structures essentially perpetnditae (figure 2.3).
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Figure 2: Incremental shear deformation fields fridme beginning of the test to the end of the pea&.IThe
shear strain fields are computed by consideringueétion windows, of sizg,,, ;. = 2.4.1073, materialized
on figure 1 (corresponding numbers).
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However, by looking more precisely on the incretakstrain field, i.e. by considering
smaller deformation windows to compute the graispldcements, things become more
complex. Associated to the disordered spatial giraof the force network of the initial static
granular material [15], intermittent strain hetexngities emerge from the beginning of the
test: patches of variables sizes of intense defitomappear through specific zones, they
brutally disappear and the strain field switcheditterent patterns. Consequently, the
mechanical behavior of granular media qualitativebks highly heterogeneous and
intermittent. This intermittency and heterogeneityhe strain field is the key point we aim to
guantify in this paper, in order to answer to thkofving questions: Is this emergence of
intermittency and heterogeneity associated to Spestaling laws? Can these processes be
connected to final shear banding we observe omdiguas a result of the coalescence and
interaction of structured localized zones?

To answer to these fundamental questions, we perfocoarse graining analysis on the
strain rate field.

3 COARSE GRAINING ANALYSIS

Incremental strain are computed over a broad rahgpatial scales at different stages of
macroscopic deformation from a coarse grainingyamabkimilar to that of Marsan et al. [16].
The configurations are saved for each simulatioth \a constant deformation intervad,,
chosen to be equal to 5:10This choice fobe, is justified in section 4.3. The increments (
vi) of displacements of each partidleare computed from the difference in the particle
positions i, Yy between two successive configurations. Then, a&hmteiangulation is
performed on the grains centers, and the spatralalevesou/ox, ouldy, avlax andaov/ay of
the incremental displacements associated to eaaieak of the mesh are computed following
a contour integral.

In the following, we focus on two invariants of timeremental strain tensor:

- the divergence

ou ov

b, = 6e1+ by = a+ 5y (1)

- the shear

ov  ou’ v  ou’
6]/:681—682:\/(@—& +(a—@ (2)

wherese; andse, are the principal components of the incrementairstensor.
The scaling properties of the incremental divergesned shear fields are then explored from a
coarse graining analysis [6,16].

First, deformation at the micro scale, i.e. the mmesale, is computed. Then, at larger
spatial scales, deformation is obtained by spijttimee sample into square cells of size ranging
from the micro scale to the macro scale (the sitrmridbox). Considea square cell of widtliv
at a certain location within the sample. We finldtla¢ element centers of the mesh that lie inside
the box and compute the average spatial derivasivis,.. over all the corresponding elements,



Florent Gimbert, Gael Combe, David Amitrano anddér Weiss

where the contribution of each element is weighbgdits area. From these gradients, thus
averaged at the scall, we compute the incremental strain invariaf¢s andéy following (1)
and (2). Assuming scaling isotropy, we define tifeotive spatial scalé of the cell as the
square root of the area covered by the elementgljwh close but not exactly equal V9.
This procedure is repeated for all the other caflithe same widtiW that cover the sample
(no overlap is considered here). Average valug8e,| > and < §y > are computed by
averaging the incremental divergesttain modulu$se,| and the incremental shear stréjn
over all the cells of the same widiV.is logarithmically binned starting frofVyacroi.€. Wis
iteratively equal t0NVmacro Whacrd 2, Whacrd4, €tc... (Figure 3).
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Figure 3: lllustration of the coarse graining methmn a sample of 2500 grains. The green arrows shew

displacement vector for each grain between theswezessive configurations taken near the peak ba& red
boxes show the areas considered to compute thenreaital strains at scales ranging from macro toascale.
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4 RESULTS

In the following, all the results are averagedraaarse graining analyses conducted on
50 simulations of 10000 grains. Similar resultsevelbtained with simulations of 45000
grain. From one simulation to another, the onlyngiag sample property is the initial
random organization of the grains in space, indycimnges within the force network
disorder.

4.1 Contractancy

Figure 4 plots the average of the incrementalrdimet strain modulus |5e,| > as a
function of scald. in the early stages of biaxial testing, up totditey (Figure 4).
At the early stages of deformationy & 1.1.1073), black curve on Figure 4(bJ, |5,| > does
not vary withL, which means that the incremental divergent dedbion is homogeneously
scattered throughout the sample. As macroscopariaktion proceeds, a decrease of
< |6e,| > with L is observed aimall scales while, fdr-values larger than a crossover scale
denoted.,, a plateau is observed. This means that. 457 L, , the incremental divergent
deformation is heterogeneous while homogeneityoray be assumed far>>L . Finally, at
the point corresponding to the maximum of contaac(i.e. the onset of macroscopic
dilation), a power law scaling over the entire rof scales is observed en|d¢,| >: the
divergent incremental deformation is at that pbighly heterogeneous, from the grain scale
to the macroscopic scale, and no characteristcagpears.
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Figure 4: Multi-scale evolution of (b) the increm@rdivergent deformation from the beginning of tast to the
onset of macroscopic dilation. The curves are nbzed by the average incremental divergent defoionat
computed at the mesh scale. The bold circles oimgdajate on the macroscopic volume variation cuhes

locations where two successive configurations @ken to perform the coarse graining analySislors
convention is the same on the two plots. (c) Inenetal divergent deformation field at the peak aftcaction.
All the calculations are done usiAg,, = 5.10°.

These results suggest a progressive structuritigeadivergence rate field as approaching
the peak of contraction, where the crossover dcglenterpreted here as a correlation length
[6], diverges. To test this hypothesis, we defirm@atrol parametek, as follows:

g (3)
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wheresf’ = 2.9.1073 is the value of axial deformatian at the peak of contraction. Thus,

is equal to 0 at; = &', and the mean incremental divergent strain modtdnsbe expressed
as

<16, > (L,A) ~ L™ H, () (4)

whereH, describes the crossover: it is thus constraineH‘bQL%) ~ const forl. « Ly, and
L v *
H, (£) ~ 1" for L > L.

We further hypothesize tha} diverges as approachiag§’ asL;~ A™", and we estimate the
exponent values from a data collapse analysis (Eigu
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Figure 5: Data collapse analysis of the averagerdance rate. The values used for the exponentg ar@.55 +
0.05 andy, =1.5+0.1.

pv=0.55+0.05 and, = 1.5 + 0.1 allow the best collapse.

We tested the significance of this observationandomly reshuffling the spatial derivatives
of the incremental displacements in space. Doiigg the coarse graining analysis shows no
power law trend. Hence, the observed power lawrsgalf < |5¢,| > with L at the peak of
contraction is the result of the spatial correlasipresent in the divergent deformation field
and can be related to the spatial structure ofléiermation field. The correlation length is
small at the onset of macroscopic deformation,rapdesents in this case the size of a
representative elementary “volume” (REV). On theeothand, the power law divergence of
the correlation length;, ate; = f" leads us to conclude that the peak of contragtiays

the role of a critical point with respect to theahigent deformation field in granular materials.
On the contrary, at that stage, no scaling is oeskfor the incremental shear deformation
field < 8y >.
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4.2 Shear banding

In order to see if a similar “critical-like” behiav can be associated to macroscopic shear
faulting and/or the onset of macroscopic softenmg performed a coarse graining analysis
on the incremental shear deformatiordy >. Strain configurations are selected in this case
with respect to the loading curverersuss; (Figure 6(a)), where = (g, — g3) /o3 is the
deviatoric stress. Looking &téy > versud. on Figure 6(c), a similar behavior with the one
presented in the previous section on the diverggeain field is observed: a rather
homogeneous incremental shear strain field (isenall associated correlation length) is
observed in the early stages of deformation, gpolvger law scaling is building up as
increases.
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Figure 6: Multi-scale evolution of (b) the increni@irshear deformation from the beginning of the tes
&% =4.1.1073 i.e. slightly before the peak load. The bold &scbn (a) indicate on the loading curve the
locations where two successive configurations @ker to perform the coarse graining analySislors are
respected on the three plots. (c) Incremental dieddrate{® = 4.2.1073. All the computations are done by
consideringSs,, = 5.107°.

The power law decrease afsy > with L at small scales shows an expongmiqual to 0.3.
However, unlike what was observed for the incremediivergent deformation in the
preceding section, frory** = 4.1.1073, the correlation length seems to saturate at a
valuelL,; = 30Dnax In other words, power law scaling never develoyesr the entire scale
range in the present case. We checkedIfhatloes not depend on the size of the system
considered, i.e. does not result from a finite sifect.

Nevertheless, we verified that a scaling simikeequation (4) well describes the results
of figure 6b and the corresponding increasg;eiup to the limiting valudy,;. To do so, we
define, following equation (3), a second contralgmaeterAs equal to O at an axial
deformatione; = &f°, and express the average incremental shear again

< 8y > (L,A)~LPs H, (Li) (5)

S

whereH, describes the crossover as in previous sectiothidstages;® is unknown but is
necessarily larger thaf®t
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We then hypothesize that grows ad; ~ A; ", and we estimate the exponent values as
well as the axial straiaf® from a data collapse analysis (Figure 6).
e =4.2.1073, p; = 0.3 + 0.05 andv, = 2.0 + 0.2 allow the best collapse.

P, = 0.3
Vg = 2
> —
ar € = 0.0042
<
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\Y;

O -

10
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Figure 6: Data collapse analysis realized on tlezane shear deformation rate. The values usetidor t
exponents args= 0.3 £ 0.05 anal; = 2.0 £ 0.2. The black bold circles highlight dheviation from power law

*
scaling of the correlation length for g, > 5.

This collapse works well foks > 0.15 i.e. for values of axial deformatieplower than
3.6.1073, providing that the choice @f® = 4.2.1073 is convenientHowever, when axial
deformation proceeds further towaufs (i.e.s; > 3.6.1073), a deviation from the scaling
form (5) is observed (black dashed circles on i)t as the result of the saturation of the
correlation length. This saturation indicates thatdivergence is not complete.
Consequently, the shear deformation rate field segemrganize with respect to a specific
level of applied straia{s = 4.2.1073, although this evolution is stopped before to agre
over the full range of spatial scales, ngar= 3.6.1073.

It is interesting to note that this axial strafi = 4.2.1073 corresponds to a
deformation stage slightly before the peak loadiesponding to the point at which the
formation of a macroscopic shear band is qualihtiveported in experiments [11] and also
in our DEM model (Figure 2), as the shear strafdfi#2 plotted on figure 2, computed over
an axial strain window ofe;q,g. = 2.4.1073, exactly starts atf® = 4.2.107°. When
calculated over a much smaller strain window 008, the incremental shear strain field at
g7’ (figure 6¢) shows strain clusters, however notaiged into a macroscopic shear band
spanning the entire sample. Unlike the shear bahfigure 2, these strain clusters do not
perpetdate and are instead highly intermittent ¢hotvn). Therefore, the structuration of the
shear strain seems to be dependent on the sihe efrain window considered.

10
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4.3 Strain window size dependency

The calculations shown in section 4.2 were peréatmsing a deformation window
e, of 5.10° between two successive configurations. While casig larger deformation
window sizes does not affect the dependence|6£,| > with L (similar results than the one
shown in section 4.1 are reported), this is notcdme for 6y >. Because highly intermittent
in time in the vicinity of the peak load, the sogliproperties of the incremental shear field are
largely affected by the deformation window size, the value o, considered to compute
the grains displacements. Figure 7 plots the restdiithe coarse graining analysis performed
arounds{s = 4.2.1073 for several values dfs,,, ranging fromb. 107¢t0 2.4.1073.

10° ¢

. N
Window \
size & g,

5.1078
1.107°

2.107°
—o—4.107°

<d7Y>

——5.107°
——1.107*

—o—3.107*

—e--24.1073

10° 10’ 10°
L (in Dm )

Figure 7: Influence of the deformation window sbzg, on the scaling properties of the deformation fitid
£ = 4.2.1073. Colored continuous lines are computed by consigeteformation windows centeredst.
The black dashed line results from a coarse grgiaimalysis conducted on the incremental sheandigddl #2
of Figure 2, obtained with a simulation of 45000tjutes.

ax

The departure from power law behavior at largeigpataled. asé¢,, increases is obvious

on this plot. It has been checked that the muliiesproperties of the shear rate deformation
field are not affected when considering valuef five times smaller than 5.f0This

means that, at{® = 4.2.10~3 and for small deformation window sizes (inferiors.10°),

the shear strain field is characterized by largeetation length values, up 89D,,,,,. By
opposition, small correlation lengths of ab8k,,,, clearly appear when considering large
deformation window sizes, i.e. greater ti2am0~>. These small correlation lengths observed
at large deformation windows seem to be robustesihe cross-over remains approximately
the same for values 6, varying of 2 orders of magnitudes, from 5°16 2.4.10°.

Thus, two distinct behaviors can be outlined:

e Large correlation lengths are reported at smadistwvindow sizes. This point out the
fact that elastic interactions between particlésnathe system to communicate via
long range interactions. The associated spatiardeftion field pattern is materialized
by patches of intense shearing, highly intermittergpace and time.

11
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« Small correlation lengths are reported at larga@rstvindow sizes. This means that
the intermittent character of the shear deformdirld associated to the development
of self affine structures observed at small streimdow sizes within the deformation
field gives rise to the observation of a macroscapiear band at large enough strain
window sizes. The correlation length given by tharse graining analysis is
associated to the width of the macroscopic sheadl,deere equal t8D,,, ;.

5. CONCLUSION

We have shown that, during compressive loadingtiapcorrelations associated to the
coalescence and interaction of structured localzets take place within the deformation
field of frictional granular materials. The asstedcorrelation length can be extracted from a
coarse graining analysis. Specific scaling propsrtif the divergent and shear strain field,
which behave separately, are associated to magigseadences:

* The divergence of the correlation length associtidbe incremental divergent strain
field modulus as approaching the onset of macrasabation is reported. This
means that the peak of contraction, locatedf'at= 2.95.1073, plays the role of a
critical point with respect to the divergent defation field.

* The increase of the correlation length within theremental shear strain field is
reported untik; = 4.1.1073is reached, where a remaining saturation is obdeate
large scales on the power law scaling. We have shbat the shear deformation field
organizes itself with respect to a specific leviedyoplied straire{® = 4.2.1073,
located slightly before the peak load. We arguéttiia point corresponds to the onset
of macroscopic shear banding.

Finally, because highly intermittent in time anéep, the shear strain field shows scaling
properties that are largely controlled by the strgindow size considered. Large spatial
correlations are observed at small strain windavsle small spatial correlations, equal to
the width of the macroscopic shear band when lapkiters{® = 4.2.1073, are observed at
large strain windows.

A remaining question is how such intermittencyeslied at very small time scales within
the deformation field, meaning that the deformafield loses its memory rapidly, leads to
the development of perennial structures materidlizea macroscopic shear band at large
time scale.
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