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Abstract. Discrete element method (DEM) simulations using periodic boundary conditions 
and molecular dynamics are conducted on a frictional granular media. Two dimensional strain 
controlled biaxial tests are carried out on an assembly of circular particles interacting via 
elastic contacts and Coulomb friction. The spatial correlations that take place within the 
deformation field along the loading path are tracked by a scaling analysis of the continuous 
strain rate field. This method allows us to discuss the degree of strain localization occurring 
throughout the test. The analysis of the correlation length in the early stages of macroscopic 
deformation leads to the identification of two distinct behaviors. First, a divergence of the 
correlation length on the first deformation invariant, i.e. the divergence, is reported at the 
onset of macroscopic dilation. This suggests an interpretation of the contraction peak as a 
critical point. Secondly, an increase of the correlation length on the second deformation 
invariant, i.e. the shear, is also observed before the peak load. However, saturation remains on 
the scaling law. We argue that this second behavior is associated to macroscopic shear 
banding: our analysis accurately gives its outbreak on the stress versus strain curve. Finally, a 
dependence of the correlation length as a function of the deformation window considered is 
reported. This shows that scaling properties within the deformation field emerge from long 
range interactions within an assembly of rigid frictional particles. 
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1 INTRODUCTION 
 

Discrete element numerical simulations (DEM) of granular materials show an 
extraordinarily rich behavior emerging from simple mechanical interactions at the particle 
scale.  

As shown by Radjai and Roux [1], a homogeneous macroscopic loading applied to a 
granular material constituted of a random assembly of rigid circular frictional particles leads 
to the development of large, non-gaussian particle velocity fluctuations at small time scales, 
as well as a power law decay of the spatial power spectrum of the velocity field. This 
indicates long-range correlations. Indeed, heterogeneous distribution of contact forces on 
scales much larger than the typical particle size [2-3] induces collective motions of particle 
assemblies, i.e. long range correlations, to operate within granular media. Thus, to 
characterize the mechanical fields (stress, strain) within granular materials from the particle 
scale to the large scale is of first interest in order to describe and understand properly their 
macroscopic mechanical response. 

Following this route, the objective of this paper is to investigate the spatial correlations 
that take place within the deformation field of frictional granular materials during 
compressive loading. Can classical macroscopic features such as dilatancy or shear banding 
be associated to specific scaling properties of the associated strain field?  

The mechanical behavior of disordered cohesive (i.e. non granular) materials, and 
specifically their approach to final failure, has been widely investigated by the statistical 
physics community in recent years (e.g. [4-5]) from numerical models such as the random 
fuse model, the tensorial random spring model or the progressive damage model [6]. Finite 
size scaling in the power law distributions of avalanche sizes S (defined as the number of 
broken fibers, bonds or damage events) and energies E have been reported, providing an 
argument in favor of a critical phase transition interpretation of failure. Recently, from a 
spatial correlation analysis of damage events as well as a multi-scale analysis of the strain-rate 
field, Girard et al. [6] reported a divergence of the correlation length as approaching the 
failure, another strong argument for the critical character of failure. 

Following this work, we perform here a coarse graining analysis on the continuous 
incremental strain field of granular materials at several stages of DEM simulations. This 
analysis allows a quantitative estimation of the degree of strain localization that take place 
within the media. Then, the results are interpreted in the framework of statistical physics in 
order to determine if the macroscopic mechanical features such as the onset of dilatancy or the 
shear strain softening can be associated to specific scaling laws of the strain-rate field. 

 
2 GRANULAR MODEL 
 

2.1 Microscopic Constitutive laws 
 

The discrete element method involved is one of the most widely used, Molecular 
Dynamics (MD) [7]. Particles motions are time-discretized with a 3rd order predictor-corrector 
scheme. All grains interact via linear elastic laws and Coulomb friction when they are in 
contact: the normal contact force �� is related to the normal apparent interpenetration � of the 
contact as �� �  �� �, where �� is a normal stiffness coefficient (� � 0 if a contact is present,  � � 0 if there is no contact). The tangential component �	 of the contact force is proportional 
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to the tangential elastic relative displacement, with a tangential stiffness coefficient �	. The 
Coulomb condition |�	| �  μ ��  requires an incremental evaluation of �	 for each time step, 
which leads to some amount of slip each time one of the equalities �	 �  μ �� is imposed. In 
this study, �� is such that � �  ��/�� � 1000 [8]. The stiffness ratio is �� � �	 � 1. 
Granular assemblies are made of two-dimensional rigid circular grains. Their diameters are 
uniformly distributed between Dmin and Dmax = 3Dmin. Periodic boundary conditions are used 
[7]. After an isotropic compression without intergranular friction μ � 0, dense samples of 
initial porosity �� � 0.15 are submitted to a vertical compression with keeping the lateral 
stress �� constant (biaxial tests). The tests presented in this study consider μ � 1. The vertical 
constant strain rate ��� is chosen such that mechanical transformation can be assumed as quasi-
static. For that, ��� is obtained by setting � � 5. 10��, where I is the inertial number [8]. Under 
these considerations, the increment of deformation ��� associated to one time step integration 
is  ��� �  8.5. 10��. 

Figure 1 shows a typical macroscopic stress strain curve obtained on a sample made of 
45000 grains. At the beginning of the test, a contracting regime is observed on the volume 
variation up to an axial strain of about 0.29% corresponding to the onset of dilation: since 
dense samples are considered here, grains rearrangements in the early stages of deformation 
are limited and contraction is mainly observed because of an elastic contact description 
between particles [9]. The inelastic deformation in the contractant regime is due to loss of 
contact and Coulomb friction between particles. After the peak of contraction, the sample 
dilates continuously. A maximum shear stress is obtained around 0.65% of macroscopic axial 
deformation. 

 
 

 
 

Figure 1: Macroscopic response of a sample of 45000 grains from 0 to 4% of deformation. The volume 
deformation is plotted in green and the macroscopic shear stress in blue as a function of axial macroscopic 
deformation. The onset of dilation is observed around �� � 2.9. 10�� and the onset of softening around �� �6.5. 10��. Bold red circles indicate, on the macroscopic shear stress curve, stages where configuration outputs 
are done. From these 4 configurations, which exhibit 3 interval windows numbered from 1 to 3, associated 

incremental strain fields are computed and plotted on figure 2.  The deformation window size is the same for all 
the three interval windows and is equal to �� !"#$ � 2.4. 10��.  
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2.2 Macroscopic shear banding 
 

 Many experiments and theoretical works have been conducted in the past in order to 
describe and understand the onset of macroscopic strain localization within shear bands in 
geomaterials. Important insights into the mechanics of macroscopic localization were 
obtained from the continuum analysis of its inception as a bifurcation in the constitutive law 
[10]. In discrete materials such as soils, the localization of deformation into thin zones of 
intense shearing is a phenomenon commonly observed [11-14]. It is also assumed that, in the 
early stages of deformation, homogeneous deformation is observed, while patterns of strain 
localization appear at some point throughout the test, generally at the peak load or slightly 
before [11]. It has been reported that these shear bands can form and disappear as deformation 
proceeds after the peak load [11]. 
 These features are qualitatively observed within our DEM simulations. Figure 2 shows 
the incremental shear strain fields (computed using equation 2, see section 3) obtained at 
different stages of the loading by integrating the grains displacements over large deformation 
windows equal to �� !"#$ � 2.4. 10��. We can see that, while heterogeneous, the incremental 
shear strain field at the beginning of the test (figure 2.1) does not show any clear macroscopic 
structure. However, as loading goes on, a macroscopic localization materialized by a shear 
band that spans the entire sample can be distinguished slightly before the peak load (Figure 
2.2). Then, these structures essentially perpetuate in time (figure 2.3). 
 
 

  

 
Figure 2: Incremental shear deformation fields from the beginning of the test to the end of the peak load. The 
shear strain fields are computed by considering deformation windows, of size �� !"#$ � 2.4. 10��, materialized 
on figure 1 (corresponding numbers).  

1 2 

3 
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 However, by looking more precisely on the incremental strain field, i.e. by considering 
smaller deformation windows to compute the grains displacements,  things become more 
complex. Associated to the disordered spatial structure of the force network of the initial static 
granular material [15], intermittent strain heterogeneities emerge from the beginning of the 
test: patches of variables sizes of intense deformation appear through specific zones, they 
brutally disappear and the strain field switches to different patterns. Consequently, the 
mechanical behavior of granular media qualitatively looks highly heterogeneous and 
intermittent. This intermittency and heterogeneity of the strain field is the key point we aim to 
quantify in this paper, in order to answer to the following questions: Is this emergence of 
intermittency and heterogeneity associated to specific scaling laws? Can these processes be 
connected to final shear banding we observe on figure 2, as a result of the coalescence and 
interaction of structured localized zones? 
 To answer to these fundamental questions, we perform a coarse graining analysis on the 
strain rate field. 
 
3 COARSE GRAINING ANALYSIS 
 

Incremental strain are computed over a broad range of spatial scales at different stages of 
macroscopic deformation from a coarse graining analysis similar to that of Marsan et al. [16]. 
The configurations are saved for each simulation with a constant deformation interval ��&  
chosen to be equal to 5.10-6. This choice for ��& is justified in section 4.3. The increments (ui, 
vi) of displacements of each particle i are computed from the difference in the particle 
positions (xi, yi) between two successive configurations. Then, a mesh triangulation is 
performed on the grains centers, and the spatial derivatives '(/'), '(/'*, '+/') and '+/'* of 
the incremental displacements associated to each element of the mesh are computed following 
a contour integral.  

In the following, we focus on two invariants of the incremental strain tensor: 
- the divergence  

��v � ��1 -  ��2 �  '(') - �+�* (1) 

- the shear 

�. � ��1 /  ��2 �  01'+'* / '(')22 - 1'+') / '('*22
 (2) 

where ��1 and ��3 are the principal components of the incremental strain tensor.  
The scaling properties of the incremental divergence and shear fields are then explored from a 
coarse graining analysis [6,16]. 

First, deformation at the micro scale, i.e. the mesh scale, is computed. Then, at larger 
spatial scales, deformation is obtained by splitting the sample into square cells of size ranging 
from the micro scale to the macro scale (the simulation box). Consider a square cell of width W 
at a certain location within the sample. We find all the element centers of the mesh that lie inside 
the box and compute the average spatial derivatives '(/'),.. over all the corresponding elements, 



Florent Gimbert, Gael Combe, David Amitrano and Jérôme Weiss 

 6

where the contribution of each element is weighted by its area. From these gradients, thus 
averaged at the scale W, we compute the incremental strain invariants ��v and �. following (1) 
and (2). Assuming scaling isotropy, we define the effective spatial scale L of the cell as the 
square root of the area covered by the elements (which is close but not exactly equal to W). 
This procedure is repeated for all the other cells of the same width W that cover the sample 
(no overlap is considered here). Average values 4 |��v| �  and 4 �. � are computed by 
averaging the incremental divergent strain modulus |��v| and the incremental shear strain �. 

over all the cells of the same width. W is logarithmically binned starting from Wmacro i.e. W is 
iteratively equal to Wmacro, Wmacro/2, Wmacro/4, etc… (Figure 3).  
 

 
 

Figure 3: Illustration of the coarse graining method on a sample of 2500 grains. The green arrows show the 
displacement vector for each grain between the two successive configurations taken near the peak load. The red 
boxes show the areas considered to compute the incremental strains at scales ranging from macro to micro scale. 
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4 RESULTS 
 

 In the following, all the results are averaged over coarse graining analyses conducted on 
50 simulations of 10000 grains. Similar results were obtained with simulations of 45000 
grain. From one simulation to another, the only changing sample property is the initial 
random organization of the grains in space, inducing changes within the force network 
disorder.  
 
4.1 Contractancy 
 

 Figure 4 plots the average of the incremental divergent strain modulus 4 |��v| � as a 
function of scale L in the early stages of biaxial testing, up to dilatancy (Figure 4).  
At the early stages of deformation (�� � 1.1. 10��), black curve on Figure 4(b), 4 |��v| � does 
not vary with L, which means that the incremental divergent deformation is homogeneously 
scattered throughout the sample. As macroscopic deformation proceeds, a decrease of 4 |��v| �   with L is observed at small scales while, for L-values larger than a crossover scale 
denoted Lv

*, a plateau is observed. This means that, for L<< L v
*, the incremental divergent 

deformation is heterogeneous while homogeneity can only be assumed for L>>L v
*. Finally, at 

the point corresponding to the maximum of contraction (i.e. the onset of macroscopic 
dilation), a power law scaling over the entire range of scales is observed on 4 |��5| �: the 
divergent incremental deformation is at that point highly heterogeneous, from the grain scale 
to the macroscopic scale, and no characteristic size appears. 
 

 
 

Figure 4: Multi-scale evolution of (b) the incremental divergent deformation from the beginning of the test to the 
onset of macroscopic dilation. The curves are normalized by the average incremental divergent deformation 
computed at the mesh scale. The bold circles on (a) indicate on the macroscopic volume variation curve the 
locations where two successive configurations are taken to perform the coarse graining analysis. Colors 
convention is the same on the two plots. (c) Incremental divergent deformation field at the peak of contraction. 
All the calculations are done using ��w = 5.10-6.  
 
 These results suggest a progressive structuring of the divergence rate field as approaching 
the peak of contraction, where the crossover scale L* , interpreted here as a correlation length 
[6], diverges. To test this hypothesis, we define a control parameter ∆v as follows: 
 Δv �  89:v�8989:v           (3) 

(b) (a) (c) 
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where ��;v � 2.9. 10�� is the value of axial deformation �� at the peak of contraction. Thus, Δv 
is equal to 0 at �� �  ��;v, and the mean incremental divergent strain modulus can be expressed 
as 
 

     4 |��v| � 1<, ∆v2 ~ <�@A  Bv C DDvEF                                             (4) 
 

where Bv describes the crossover: it is thus constrained by  Bv C DDvEF ~ const for < G <5E  and 

  Bv C DDvEF ~ <v@A  for < H <5E . 
We further hypothesize that <5E  diverges as approaching ��;v

 as <vE ~ ∆�Iv, and we estimate the 
exponent values from a data collapse analysis (Figure 5).  
 

 
 

Figure 5: Data collapse analysis of the average divergence rate. The values used for the exponents are ρv = 0.55 ± 
0.05 and νv = 1.5 ± 0.1. 
 
ρv = 0.55 ± 0.05 and νv = 1.5 ± 0.1 allow the best collapse. 
We tested the significance of this observation by randomly reshuffling the spatial derivatives 
of the incremental displacements in space. Doing this, the coarse graining analysis shows no 
power law trend. Hence, the observed power law scaling of 4 |��v| � with L at the peak of 
contraction is the result of the spatial correlations present in the divergent deformation field 
and can be related to the spatial structure of the deformation field. The correlation length <5E  is 
small at the onset of macroscopic deformation, and represents in this case the size of a 
representative elementary “volume” (REV). On the other hand, the power law divergence of 
the correlation length <5E  at �� � ��;v leads us to conclude that the peak of contraction plays 
the role of a critical point with respect to the divergent deformation field in granular materials. 
On the contrary, at that stage, no scaling is observed for the incremental shear deformation 
field 4 �. �.  
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4.2 Shear banding 
 

 In order to see if a similar “critical-like” behavior can be associated to macroscopic shear 
faulting and/or the onset of macroscopic softening, we performed a coarse graining analysis 
on the incremental shear deformation 4 �. �. Strain configurations are selected in this case 
with respect to the loading curve J versus �� (Figure 6(a)), where J � 1�� / ��2/�� is the 
deviatoric stress.  Looking at 4 �. � versus L on Figure 6(c), a similar behavior with the one 
presented in the previous section on the divergent strain field is observed: a rather 
homogeneous incremental shear strain field (i.e. a small associated correlation length) is 
observed in the early stages of deformation, and a power law scaling is building up as ε1 
increases.  
 

 

  
 

Figure 6: Multi-scale evolution of (b) the incremental shear deformation from the beginning of the test to ��K!	 � 4.1. 10�� i.e. slightly before the peak load. The bold circles on (a) indicate on the loading curve the 
locations where two successive configurations are taken to perform the coarse graining analysis. Colors are 
respected on the three plots. (c) Incremental shear field at ��;s � 4.2. 10��. All the computations are done by 
considering ��w � 5. 10�M. 
 
The power law decrease of 4 �. � with L at small scales shows an exponent ρs equal to 0.3. 
However, unlike what was observed for the incremental divergent deformation in the 
preceding section, from ��K!	  � 4.1.10��, the correlation length <NE  seems to saturate at a 
value <K!	E  ≈ 30Dmax. In other words, power law scaling never develops over the entire scale 
range in the present case. We checked that <NOPE  does not depend on the size of the system 
considered, i.e. does not result from a finite size effect.  
 Nevertheless, we verified that a scaling similar to equation (4) well describes the results 
of figure 6b and the corresponding increase of <NE , up to the limiting value <K!	E . To do so, we 
define, following equation (3), a second control parameter ∆s equal to 0 at an axial 
deformation �� � ��;s, and express the average incremental shear strain as: 
 

    4  �. �  1<, ∆s2 ~ <�@Q  BK C DDsEF                                                (5) 

 
where BN describes the crossover as in previous section. At this stage, ��;s

 is unknown but is 
necessarily larger than ��K!	

. 

(b) (c) (a) 
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We then hypothesize that <NE  grows as <NE  ~ ∆K�IR , and we estimate the exponent values as 
well as the axial strain ��;s  from a data collapse analysis (Figure 6). ��;s � 4.2. 10��, SK � 0.3 U 0.05 and VK � 2.0 U 0.2 allow the best collapse. 
 

  
 

Figure 6: Data collapse analysis realized on the average shear deformation rate. The values used for the 
exponents are ρs = 0.3 ± 0.05 and νs = 2.0 ± 0.2. The black bold circles highlight the deviation from power law 
scaling of the correlation length Ls

*  for ε1 > WXYZ[. 
 
This collapse works well for ∆s ≥ 0.15 i.e. for values of axial deformation ε� lower than 3.6.10��, providing that the choice of ��;s � 4.2. 10�� is convenient. However, when axial 
deformation proceeds further towards ��;s (i.e. �� � 3.6.10��), a deviation from the scaling 
form (5) is observed (black dashed circles on Figure 6), as the result of the saturation of the 
correlation length. This saturation indicates that the divergence is not complete. 
Consequently, the shear deformation rate field seems to organize with respect to a specific 
level of applied strain ��;s  � 4.2.10��, although this evolution is stopped before to spread 
over the full range of spatial scales, near ε�  � 3.6.10��.  

It is interesting to note that this axial strain ��;s  � 4.2.10�� corresponds to a 
deformation stage slightly before the peak load, corresponding to the point at which the 
formation of a macroscopic shear band is qualitatively reported in experiments [11] and also 
in our DEM model (Figure 2), as the shear strain field #2 plotted on figure 2, computed over 
an axial strain window of �� !"#$ � 2.4. 10��, exactly starts at ��;s � 4.2. 10��. When 
calculated over a much smaller strain window of 5.10-6, the incremental shear strain field at ��;s (figure 6c) shows strain clusters, however not organized into a macroscopic shear band 
spanning the entire sample. Unlike the shear bands of figure 2, these strain clusters do not 
perpetúate and are instead highly intermittent (not shown). Therefore, the structuration of the 
shear strain seems to be dependent on the size of the strain window considered. 
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4.3 Strain window size dependency 
 

 The calculations shown in section 4.2 were performed using a deformation window ��w of 5.10-6  between two successive configurations. While considering larger deformation 
window sizes does not affect the dependence of 4 |��v| � with L (similar results than the one 
shown in section 4.1 are reported), this is not the case for 4 �. �. Because highly intermittent 
in time in the vicinity of the peak load, the scaling properties of the incremental shear field are 
largely affected by the deformation window size, i.e. the value of ��w considered to compute 
the grains displacements. Figure 7 plots the results of the coarse graining analysis performed 
around ��;s � 4.2. 10�� for several values of ��w, ranging from 5. 10�M to 2.4. 10��.  
 

 
 

Figure 7: Influence of the deformation window size ��w on the scaling properties of the deformation field at ��;s � 4.2. 10��. Colored continuous lines are computed by considering deformation windows centered at ��;s. 
The black dashed line results from a coarse graining analysis conducted on the incremental shear strain field #2 
of Figure 2, obtained with a simulation of 45000 particles. 
 
The departure from power law behavior at large spatial scales L as ��w increases is obvious 
on this plot. It has been checked that the multi-scale properties of the shear rate deformation 
field are not affected when considering values of ��w five times smaller than 5.10-6. This 
means that, at ��;s � 4.2. 10�� and for small deformation window sizes (inferior to 5.10-5),  
the shear strain field is characterized by large correlation length values, up to 30]^!_. By 
opposition, small correlation lengths of about 3]^!_ clearly appear when considering large 
deformation window sizes, i.e. greater than 2. 10��. These small correlation lengths observed 
at large deformation windows seem to be robust, since the cross-over remains approximately 
the same for values of ��w varying of 2 orders of magnitudes, from 5.10-5 to 2.4.10-3.  
Thus, two distinct behaviors can be outlined: 

• Large correlation lengths are reported at small strain window sizes. This point out the 
fact that elastic interactions between particles allow the system to communicate via 
long range interactions. The associated spatial deformation field pattern is materialized 
by patches of intense shearing, highly intermittent in space and time. 
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• Small correlation lengths are reported at large strain window sizes.  This means that 
the intermittent character of the shear deformation field associated to the development 
of self affine structures observed at small strain window sizes within the deformation 
field gives rise to the observation of a macroscopic shear band at large enough strain 
window sizes. The correlation length given by the coarse graining analysis is 
associated to the width of the macroscopic shear band, here equal to 3]^!_.  

 
5. CONCLUSION 
 

 We have shown that, during compressive loading, spatial correlations associated to the 
coalescence and interaction of structured localized zones take place within the deformation 
field of frictional granular materials. The associated correlation length can be extracted from a 
coarse graining analysis. Specific scaling properties of the divergent and shear strain field, 
which behave separately, are associated to macroscopic evidences: 

• The divergence of the correlation length associated to the incremental divergent strain 
field modulus as approaching the onset of macroscopic dilation is reported.  This 
means that the peak of contraction, located at ��;v � 2.95. 10��, plays the role of a 
critical point with respect to the divergent deformation field. 

• The increase of the correlation length within the incremental shear strain field is 
reported until �� � 4.1. 10��is reached, where a remaining saturation is observed at 
large scales on the power law scaling. We have shown that the shear deformation field 
organizes itself with respect to a specific level of applied strain ��;s  � 4.2.10��, 
located slightly before the peak load. We argue that this point corresponds to the onset 
of macroscopic shear banding. 

Finally, because highly intermittent in time and space, the shear strain field shows scaling 
properties that are largely controlled by the strain window size considered. Large spatial 
correlations are observed at small strain windows, while small spatial correlations, equal to 
the width of the macroscopic shear band when looking after ��;s  � 4.2.10��, are observed at 
large strain windows. 
 A remaining question is how such intermittency observed at very small time scales within 
the deformation field, meaning that the deformation field loses its memory rapidly, leads to 
the development of perennial structures materialized by a macroscopic shear band at large 
time scale. 
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