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Summary. The macroscopic behavior of granular materials, as a consequence of the inter-
actions of individual grains at the micro scale, is studied in this paper. A two scale numerical
homogenization approach is developed. At the small-scale level, a granular structure is con-
sidered. The Representative Elementary Volume (REV) consists of a setof N polydisperse rigid
discs (2D), with random radii. This system is simulated using the Discrete Element Method
(DEM) - molecular dynamics with a third-order predictor-corrector scheme. Grain interac-
tions are modeled by normal and tangential contact laws with friction (Coulomb’s criterion).
At the macroscopic level, a numerical solution obtained with the Finite ElementMethod
(FEM) is considered. For a given history of the deformation gradient, the global stress re-
sponse of the REV is obtain. The macroscopic stress results from the Love(Cauchy-Poisson)
average formula including contact forces and branch vectors joining the mass centers of two
grains in contact.
The upscaling technique consists of using the DEM model at each Gauss point of the FEM
mesh to derive numerically the constitutive response. In this process, a tangent operator is
generated together with the stress increment corresponding to the given strain increment at
the Gauss point. In order to get more insight into the consistency of the two-scale scheme,
the determinant of the acoustic tensor associated with the tangent operatoris computed. This
quantity is known to be an indicator of a possible loss of uniqueness locally, at the macro
scale, by strain localization in a shear band.
The results of different numerical studies are presented in the paper. Influence of number of
grains in the REV cell, numerical parameters are studied. Finally, the two-scale (FEM-DEM)
computations for simple samples are presented.

1 INTRODUCTION

The presented study considers a two-scale numerical scheme for the description of the be-
havior of granular materials. At the small-scale level, we consider that thegranular structure
consists of 2D round rigid grains, modeled by the discrete element method(DEM). At the
macroscopic level, we consider a numerical solution obtained with the Finite Element Method
(FEM). The link between scales is that of the computational homogenization, in which aver-
age REV stress response of the granular microstructure is obtained in each macroscopic Gauss
point of the FEM mesh as the result of the macroscopic deformation history imposed to the
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REV. We also compute the tangent stiffness matrix, at the Gauss point, andthe acoustic tensor,
which is an indicator of possible unstable behaviors. The influence of different parameters on
the stability of the macroscopic response is presented through the results of numerical tests.
At the end, some results of two-scale computations are presented.

2 MACROSCOPIC MODELLING

For a given history of the deformation gradient, we compute the global stress response of
the REV. The macroscopic stress results from the average formulaσi j = 1

S ∑Nc
c=1 f c

i · l
c
j ; i, j ∈

{x,y}, whereS is the area of the sample,f c
i and lcj are respectively the componenti of the

force acting in the contactc and the componentj of the branch vector joining the mass centers
of two grains in contact [1]. Next, we convert the Cauchy stress into the Piola-Kirhoff stress
[2]. The Piola-Kirchhoff stress is depended on the history of thegradient of deformationF
[3], [4]

P(t) = Γ t{F(τ),τ ∈ [0, t]} (1)

For any history ofF, we assume thatP admits a right time derivativėP with respect tot:

Ṗ = limδ t→0
P(t +δ t) − P(t)

δ t
(2)

We also assume that, for given history ofF till time t, the right-sided derivativėP depends
only on the right time derivativėF, that is :

Ṗ = Θ(Ḟ) (3)

where the functionΘ is generally non-linear with respect to its argumentḞ.
In what follows, we limit our study to the case when the history ofF is given by F =
I + αG0 with G0 being a fixed tensor andα being time-like loading parameter which runs
monotonously from 0 to 1. In this case we get:Ṗ = Ξ(α) and by differentiating with respect

to α , we get thaṫF = G0 along the path. According to the definition of the functionΘ we can
write the approximate formula [3], [4]:

Θ(G0) ≈
Ξ(α +∆α) − Ξ(α)

∆α
(4)

The loss of uniqueness for the rate-type boundary value problems is analysed through the Rice
approach [5]. Following this analysis we look for the rate of deformation gradientḞ which is
discontinuous along the boundary of a localization band. It is known that such a discontinuity
can be written as [5]:

˙
F1

kL =
˙

F0
kL +qkNl (5)

whereN is the normal (||N||= 1) to the interface,
˙F1 is taken on the same side asN and

˙F0 on
the opposite side. The stress vector has to be continuous across the interface :

(

˙
P1

iJ −
˙

P0
iJ

)

NJ = 0 (6)

As
˙

P1
iJ and

˙
P0

iJ are linked to
˙

F1
iJ and, respectively,

˙
F1

iJ , by Eq. (3), the unknowsq andN have to
satisfy the equation
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(

ΘiJ

( ˙F0 +q⊗N
)

−ΘiJ

( ˙F0
))

NJ = 0 (7)

for given
˙F0.

In the considered macroscopic quasistatic deformation process, the question of loss of ellip-
ticity therefore reduces to the determination of the valueα for which Eq. (7) has a non-trivial
solution(q,N), q 6= 0.

In our case we restrict the search of non-trivial solutions to the case in which the tensor
˙F1 is

closed to
˙F0. This leads to a continuous bifurcation mode in the sense of Rice [5].

So, assuming thatΘ is differentiable at
˙F0, Eq. (7) yields, after linearization:

BiJkL

( ˙F0
)

qkNLNJ = 0 (8)

whereBiJkL

( ˙F0
)

= ∂ΘiJ

∂ Ḟkl
|
Ḟ=Ḟ0

It is clear that a non-trivial solution exists only if the so-called

acoustic tensorQ, defined byQik = BiJkLNLNJ, is singular, that is only if:

detQ = 0 (9)

For this particular process considered here and given byF = I + αG0, we have seen thatḞ is
constant and equal toG0 and the functionΘ(G0) can be approximated by Eq.(4).
As to the derivation ofΘ , it can be numerically approximated by finite differences:

BiJkL =
ΘiJ(G0 + ε∆kL)−ΘiJ(G0)

ε
(10)

where∆kL is a second-order tensor such that all its components are equal to 0 except thekL
one which is equal to 1. In Fig. 1 we have represented the stress at the point δ f ∆α (in the same
linear direction as point n) and stresses in points with perturbationsε∆kL. We also computed
the tangent matrix [3], [4] as :

BiJkL =
PiJ(αn+1 +δ f ∆α + ε∆kL) − PiJ(αn+1 +δ f ∆α)

δ f ε∆kL (11)

whereδ f ∆α is a small variation step in the main direction,ε∆kL is a small perturbation of
thekL component.

Fig. 1. Schematic representation of the computation of the tangent matrix
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3 MICRO-SCALE MODELING: DEM

The system consist of a set ofN polydisperse discs, with the random radii homogeneously
distributed betweenRmin andRmax = 2.5Rmin. This system is simulated using a discrete el-
ement method - molecular dynamics with a third-order predictor-corrector scheme [6]. All
grains interact via a linear elastic law and Coulomb friction when they are in contact [7]. The
normal contact forcefn is related to the normal apparent interpenetrationδ of the contact
as fn = knδ , wherekn is a normal stiffness coefficient (δ > 0 if a contact is present,δ = 0
if there is no contact). The tangential componentft of the contact force is proportional to the
tangential elastic relative displacement, with a tangential stiffness coefficient kt . The Coulomb
condition| ft | ≤ µ fn requires an incremental evaluation offt in each time step, which leads to
some amount of slip each time one of the equalitiesft = ±µ fn is imposed. A normal viscous
component opposing the relative normal motion of any pair of grains in contact is also added
to the elastic forcefn to obtain a critical damping of the dynamics. As the boundary condition
we consideredPeriodic Limit Condition(PLC).

4 RESULTS

For the stability criterion the Rice [5] criterion was chosen, which says that ifdeterminant of
acoustic tensor is equal 0 (det Q =0) for some angleθ , there may exist bifurcation.
The influence of the size of the sample and the numerical parameters: small variation stepδ f
and perturbationε will be studied in this section. Periodic limit condition is applied for those
tests. Friction between grains is assumed atµ = 0.5.
The influence of the sample size for shear test for stress is presented inFig. 2 (to be more
clear, the diagrams were moved up on y-axis). Stars represent instability zones, that corre-
spond to thedetQ < 0. This test was made forδ f = 0.1 and perturbationε∆kL = 2 ·10−5.
Different number of grains (400, 1024, 3025 and 4900 grains) were considered. We remark
the diminution of the global number of potential instability points when the number of grains
is increasing.
We have also done tests to check the influence of the small variation stepδ f δα and the small
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Fig. 2. Influence of the size of sample on macroscopic stability

perturbationsε∆kL. In this case we have obtained larger stability zones for smaller values of
small variation stepδ f δα and for smaller values of perturbation value. However, it is im-
portant to take the value ofδ f δα carefully to stay still in elasto-plasticy behaviour (not only



TWO SCALE MODEL (FEM-DEM) FOR GRANULAR MEDIA 5

elasticity).

To succeed in the macro-micro computations the numerical parameters should be chosen
very carefully. In Discrete Element Method and also in Finite Element Method, there are dif-
ferent variations, which have significant influence on the convergence of the test.
For the FEM-DEM computations the open-source code ’FLagSHyP’ written by J.Bonnet is
used. On FEM level, the two-dimensional quadratic elements with four Gauss points were
chosen.
On the micro level, in DEM calculations, according to our study of instability, theparameters:
small variation stepδ f and small perturbationε were chosen as 0.1 and 2·10−5, respectively.
The boundary conditions was periodic (PLC). Friction between grainsµ = 0.5 was chosen.
Number of grains is equal 400 (only, because calculations are very timeconsuming).
First, the shear test was done, where incremental shear displacementis equalδ = 0.00025.
Results are plotted in figure 3.
Next, biaxial tests with strain control with no volume changes were done. The incremental

Fig. 3. DEM-FEM: Global stressesσxy for shear test with displacementδ = 0.00025 imposed

deformation isδEyy = −δExx = 0.00025. In the figure 4 (a) the stress-strain responses are
presented.
The last tests were done for classical biaxial test. On the walls constant pressure is applied

Fig. 4. DEM-FEM: Stress-strain response for (a) biaxial test (b) classical biaxial compression
(δ = 0.00001,δ = 0.00005 orδ = 0.0001).
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equal to the isotropic stress. On the top displacement incremental step is imposed (three dif-
ferent incremental steps equal 0.00001, 0.00005 and 0.0001) 4 (b).
Those tests show that two-scale approach is possible to compute. More complicated tests as
classical biaxial or shear can be simulated. It proves that even for non-linear behavior, the two
scale model can work well.

5 CONCLUSIONS

A two-scale numerical approach for granular materials has been proposed, combining DEM
modeling of the granular micro structure with the FEM modeling of the overallresponse. We
focused on the consistency of the discrete-to-continuous approach, through the identification
of the numerically-induced macroscopic instabilities.
The sample size plays an important role for stability zones. In order to prevent instabilities in
the sense of Rice criterion, it is very important to make the correct choicefor the size of the
sample (not too small). It is also very important to choose the correct small variation stepδ f
of and small perturbationε. Both of them (as well as the number of grains in the cell) have
significant influence on the number of instability points. This two parametersshould be cho-
sen in respect to the problem we want to solve. Microscopic behaviour may be a true physical
behaviour, linked to instability and shear banding. As such, it should not be rejected in gen-
eral. But the occurrence of such events far from the failure regime ofthe sample, if not limited
to a few points but spread over the sample in a significant number of points, may indicate
non-relevant numerical behaviour. This is a challenge to deal with, maybe by exploring more
changes in the numerical parameters. However, it is still possible to compute small two-scales
geotechnical problems. After study of the influence of the small variationstep and pertur-
bations coefficient, we are able to avoid numerical instabilities. Since, the computations are
extremely time consuming, all tests are done for small sample with 400 grains, what causes
that incremental step should be very small. For bigger incremental stepsthere is a problem
with convergence. However this problem should disappear, when bigger REV samples will be
used.
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