TWO SCALE MODEL (FEM-DEM) FOR
GRANULAR MEDIA

Michat Nitka, Ga&l Combe, Cristian Dascalu, Jacques Desrues

Grenoble Universé, Laboratory 3S-R, BP 53-38041 Grenoble cedex 9 France

Summary. The macroscopic behavior of granular materials, as a consequefite anter-
actions of individual grains at the micro scale, is studied in this paper. A tatesnumerical
homogenization approach is developed. At the small-scale level, algrasttucture is con-
sidered. The Representative Elementary Volume (REV) consists affégedlydisperse rigid
discs (2D), with random radii. This system is simulated using the Discreteeftektethod
(DEM) - molecular dynamics with a third-order predictor-corrector eafe. Grain interac-
tions are modeled by normal and tangential contact laws with friction (Coblewgriterion).
At the macroscopic level, a numerical solution obtained with the Finite Eleetihod
(FEM) is considered. For a given history of the deformation gradient, tbbaj stress re-
sponse of the REV is obtain. The macroscopic stress results from thé@Cawehy-Poisson)
average formula including contact forces and branch vectors joining th&smenters of two
grains in contact.

The upscaling technique consists of using the DEM model at each Gaiksopthe FEM
mesh to derive numerically the constitutive response. In this processgartaaperator is
generated together with the stress increment corresponding to the gieém iscrement at
the Gauss point. In order to get more insight into the consistency of thedale-scheme,
the determinant of the acoustic tensor associated with the tangent ope&yatmmputed. This
quantity is known to be an indicator of a possible loss of uniqueness localiigeanacro
scale, by strain localization in a shear band.

The results of different numerical studies are presented in the papkrehce of number of
grains in the REV cell, numerical parameters are studied. Finally, the tate{FEM-DEM)
computations for simple samples are presented.

1 INTRODUCTION

The presented study considers a two-scale numerical scheme foegheption of the be-
havior of granular materials. At the small-scale level, we consider thagrdmaular structure
consists of 2D round rigid grains, modeled by the discrete element mébiem). At the
macroscopic level, we consider a numerical solution obtained with the Fileitedit Method
(FEM). The link between scales is that of the computational homogenizatievhich aver-
age REV stress response of the granular microstructure is obtainezhima&roscopic Gauss
point of the FEM mesh as the result of the macroscopic deformation pistmosed to the
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REV. We also compute the tangent stiffness matrix, at the Gauss poirntheadoustic tensor,
which is an indicator of possible unstable behaviors. The influence efrdiff parameters on
the stability of the macroscopic response is presented through the refsultserical tests.
At the end, some results of two-scale computations are presented.

2 MACROSCOPIC MODELLING

For a given history of the deformation gradient, we compute the globedsstesponse of
the REV. The macroscopic stress results from the average formnuia%zy;l el i,j e
{x,y}, whereSis the area of the samplé¢ andljC are respectively the componenof the
force acting in the contactand the componenof the branch vector joining the mass centers
of two grains in contact [1]. Next, we convert the Cauchy stress into ila-Rirhoff stress
[2]. The Piola-Kirchhoff stress is depended on the history ofgteaient of deformatior
(3], [4] B B

P(t) = r'{F(1),T € [0,t]} @)

For any history oF, we assume th& admits a right time derivative with respect td:

B limg, o0 <5t5)t - P(t) @

We also assume that, for given historyftill time t, the right-sided derivative depends
only on the right time derivative, that is :

P=0(F) ©)
where the functior® is generally non-linear with respect to its argumEnt B
In what follows, we limit our study to the case when the historyFofs given by F =
I + aGP with GO being a fixed tensor and being time-like loading parameter which runs
monotonously from 0 to 1. In this case we det= =(a) and by differentiating with respect
to a, we get thaF = GP along the path. According to the definition of the funct®mwe can
write the approximate formula [3], [4]:
Z(a+4a) — =(a)
4
Aa 4
The loss of uniqueness for the rate-type boundary value problemalisad through the Rice
approach [5]. Following this analysis we look for the rate of deformatiadigntF which is
discontinuous along the boundary of a localization band. It is known titdt & discontinuity
can be written as [5]:

0(G% ~

FL=FR3+aN ®)

whereN is the normal {(N|| = 1) to the interfacef? is taken on the same sidedsandF° on
the opposite side. The stress vector has to be continuous across trecmterf

(RS- R8)m o ®

As 5% and% are linked td% and, respectivelﬂ, by Eqg. (3), the unknowg andN have to
satisfy the equation
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(QJ <E+Q®N)*@u (E>>NJ:0 (7)

for givenFO.

In the considered macroscopic quasistatic deformation process, élséajuof loss of ellip-
ticity therefore reduces to the determination of the vatuer which Eq. (7) has a non-trivial
solution(q,N), g # 0.

In our case we restrict the search of non-trivial solutions to the casaiirhvithe tensoF! is
closed toFO. This leads to a continuous bifurcation mode in the sense of Rice [5].

So, assuming tha@ is differentiable afo, Eq. (7) yields, after linearization:
BiskL (E) akNLN; =0 (8)

whereBjjkL (E) = ‘;% \-ﬁ = Itis clear that a non-trivial solution exists only if the so-called
[ F=
acoustic tensof, defined byQikx = Bijk NLN3, is singular, that is only if:

detQ=0 )

For this particular process considered here and givehbyt + aG®, we have seen thais
constant and equal 18° and the functior®(GP) can be approximated by Eq.(4).
As to the derivation 0B, it can be numerically approximated by finite differences:

O (G°+eak) — @y (GY)
&

BigkL = (10)
whereAX is a second-order tensor such that all its components are equal tegt eixekL
one whichis equal to 1. In Fig. 1 we have represented the stress aiftihé pAa (in the same
linear direction as point n) and stresses in points with perturbatiaks. We also computed
the tangent matrix [3], [4] as :

Py(a™143fAa+ At — By(a™t45fAa)
Of eAkL

BigkL = (11)

wheredfAa is a small variation step in the main directiam)k- is a small perturbation of

thekL component.
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Fig. 1. Schematic representation of the computation of the tangent matrix
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3 MICRO-SCALE MODELING: DEM

The system consist of a set Nf polydisperse discs, with the random radii homogeneously
distributed betweelRmin and Rmax = 2.5Rmin. This system is simulated using a discrete el-
ement method - molecular dynamics with a third-order predictor-ctamrescheme [6]. All
grains interact via a linear elastic law and Coulomb friction when they arentacb[7]. The
normal contact force, is related to the normal apparent interpenetrathoaf the contact

as fn, = knd, wherek, is a normal stiffness coefficiend (> 0 if a contact is preseng = 0

if there is no contact). The tangential compon&ntf the contact force is proportional to the
tangential elastic relative displacement, with a tangential stiffness coaffigi@he Coulomb
condition|ft| < u f, requires an incremental evaluationfpin each time step, which leads to
some amount of slip each time one of the equalifies +pu f,, is imposed. A normal viscous
component opposing the relative normal motion of any pair of grainsmtact is also added

to the elastic forcd, to obtain a critical damping of the dynamics. As the boundary condition
we consideredPeriodic Limit Condition(PLC).

4 RESULTS

For the stability criterion the Rice [5] criterion was chosen, which says tligtérminant of
acoustic tensor is equal @€t Q =0) for some angléd, there may exist bifurcation.

The influence of the size of the sample and the numerical parametexi vanmtion step) f
and perturbatior will be studied in this section. Periodic limit condition is applied for those
tests. Friction between grains is assumegd at 0.5.

The influence of the sample size for shear test for stress is presenfgl id (to be more
clear, the diagrams were moved up on y-axis). Stars representilitgtabnes, that corre-
spond to thaletQ < 0. This test was made fa¥f = 0.1 and perturbatiomAKL = 2. 1075,
Different number of grains (400, 1024, 3025 and 4900 grainsgwensidered. We remark
the diminution of the global number of potential instability points when the nurobgrains
is increasing.

We have also done tests to check the influence of the small variatiod sé&pand the small
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Fig. 2. Influence of the size of sample on macroscopic stability

perturbationsAKL. In this case we have obtained larger stability zones for smaller values of
small variation ste@ fda and for smaller values of perturbation value. However, it is im-
portant to take the value @f da carefully to stay still in elasto-plasticy behaviour (nhot only
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elasticity).

To succeed in the macro-micro computations the numerical parambtarsi e chosen
very carefully. In Discrete Element Method and also in Finite Element Mgttiere are dif-
ferent variations, which have significant influence on the convemehthe test.

For the FEM-DEM computations the open-source code 'FLagSHyP’ wrhiteJ.Bonnet is
used. On FEM level, the two-dimensional quadratic elements with four Ganists were
chosen.

On the micro level, in DEM calculations, according to our study of instabilityprameters:
small variation sted f and small perturbation were chosen as Dand 2 10~°, respectively.
The boundary conditions was periodic (PLC). Friction between graias0.5 was chosen.
Number of grains is equal 400 (only, because calculations are venctnsuming).

First, the shear test was done, where incremental shear displacenegptald = 0.00025.

Results are plotted in figure 3.

Next, biaxial tests with strain control with no volume changes were done.ifidremental

%/ Cg

Fig. 3. DEM-FEM: Global stressesyy for shear test with displacemedit= 0.00025 imposed

deformation is6Eyy = —dExx = 0.00025. In the figure 4 (a) the stress-strain responses are
presented.
The last tests were done for classical biaxial test. On the walls constsgype is applied
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Fig. 4. DEM-FEM: Stress-strain response for (a) biaxial test (b) classiaaldd compression
(6 =0.00001,5 = 0.00005 ord = 0.0001).
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equal to the isotropic stress. On the top displacement incremental stepasechfihree dif-
ferent incremental steps equaf0001, 000005 and M001) 4 (b).

Those tests show that two-scale approach is possible to compute. Mopdicated tests as
classical biaxial or shear can be simulated. It proves that even folimear behavior, the two
scale model can work well.

5 CONCLUSIONS

A two-scale numerical approach for granular materials has beemgedpcombining DEM
modeling of the granular micro structure with the FEM modeling of the ovezaflonse. We
focused on the consistency of the discrete-to-continuous approashgththe identification
of the numerically-induced macroscopic instabilities.

The sample size plays an important role for stability zones. In order t@prénstabilities in
the sense of Rice criterion, it is very important to make the correct clioidde size of the
sample (not too small). It is also very important to choose the correafl sariation stepd f
of and small perturbatios. Both of them (as well as the number of grains in the cell) have
significant influence on the number of instability points. This two parameterald be cho-
sen in respect to the problem we want to solve. Microscopic behaviopbma true physical
behaviour, linked to instability and shear banding. As such, it should eogjected in gen-
eral. But the occurrence of such events far from the failure regirtteecgample, if not limited
to a few points but spread over the sample in a significant number of pailatg indicate
non-relevant numerical behaviour. This is a challenge to deal withbenhy exploring more
changes in the numerical parameters. However, it is still possible toutersmall two-scales
geotechnical problems. After study of the influence of the small variattep and pertur-
bations coefficient, we are able to avoid numerical instabilities. Since, theutations are
extremely time consuming, all tests are done for small sample with 400sgrairat causes
that incremental step should be very small. For bigger incremental stepesis a problem
with convergence. However this problem should disappear, whenrdRig}é samples will be
used.
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