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Abstract. Based on numerical simulations of quasistatic deformadfomodel granular materials, two rheological regimes
are distinguished, according to whether macroscopicrstnaierely reflect microscopic material strains within thaimgg in
their contact regions (type | strains), or result from ibgties and contact network rearrangements at the miogmsdevel
(type 1l strains). We discuss the occurrence of regimes | lam simulations of model materials made of disks (2D) or
spheres (3D). The transition from regime | to regime Il in mi@mmic tests such as triaxial compression is different flmth
the elastic limit and from the yield threshold. The distiaotbetween both types of response is shown to be cruciahtor t
sensitivity to contact-level mechanics, the relevantalalgs and scales to be considered in micromechanical apfeathe
energy balance and the possible occurrence of macroscwgpabilities
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INTRODUCTION

The quasistatic limit, therigid limit and the macroscopic limit

Although they are modeled, at the macroscopic level, withstitutive laws in which physical time and inertia play
no part [1, 2], granular materials are most often investidatt the microscopic level by “discrete element” numerical
methods (DEM) in which the motion of the solid bodies is deti@ed through integration of dynamical equations
involving masses and accelerations. Fully quasistaticagmbhes, in which the system evolution in configuration
space, as some loading parameter is varied, is regarded @stinuous set of mechanical equilibrium states, are
quite rare in the numerical literature [3, 4, 5]. It is regedidas a natural starting point, on the other hand, to perform
suitable averages of the mechanical response of the elsmieatcontact network to derive the macroscopic material
response [6]. Whether and in which cases it is possible foedise with dynamical ingredients of the model at the
granular level and how the quasistatic limit is approachredendamental issues that still need clarification.

Another set of open questions are related to the role ofghardeformability. Most DEM studies include contact
elasticity in the numerical model. Experimentally, elagiehavior is routinely measured in quasistatic tests [d] an
sound propagation. Yet, most often, contact deflectiongjaite negligible in comparison with grain diameters. In
the “contact dynamics” method [8, 9], which is used to sinritguasistatic granular rheology [10, 11, 12], grains are
modeled as rigid, undeformable solid bodies. The influeficentact deformability on the macroscopic behavior, the
existence of a well-defined rigid limit are thus other bassues calling for further investigations.

Small granular samples, as the ones used in DEM studies) eftleibit quite noisy mechanical properties. The
approach to a macroscopic behavior expressed with smaetssitrain curve might seem problematic, especially in
the presence of rearrangement events, associated wisilitgts at the microscopic level [13, 14].

Theoriginsof strain

The present communication shows how one may shed light omtegplay between the quasistatic, rigid and
macroscopic limits on distinguishing two different rhegiltal regimes and delineating their conditions of occucegn
in simple model materials. Macroscopic strain in solidigc@nular materials has two obvious physical origins: first,
grains deform near their contacts, where stresses coatelito that one models the grain interaction with a point
force); then, grain packs rearrange as contact networlekpamd then repair in a different stable configuration. We
refer here respectively to the two different kinds of stsa@s type | and Il. The present paper, based on numerical
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simulations of simple materials, identifies the regimesaded as | and Il accordingly, within which one mechanism
or the other dominates, and discusses the consequences quatsistatic rheology of granular materials.

NUMERICAL MODEL MATERIALSAND SIMULATION PROCEDURES

Two sets of numerical simulation results are exploitedWwelavo-dimensional (2D) assemblies of polydisperse disks,
as in Refs. [15, 3, 16], are subjected to fully stress-cdlelobiaxial tests, for which a quasistatic computation
method [15, 3, 17] is exploited, in addition to standard DEMdations. The behavior of three-dimensional (3D)
packs of monosized spherical particles, as in Refs. [1820Pis studied in simulated triaxial compression testshwit
special attention to strains in the quasistatic limit. duthe results are presented in the references (mostly iesom
conference proceedings) cited just above, pending theqatioin of a more comprehensive study.

Two-dimensional material and stress-controlled tests

2D systems are simulated in order to investigate basic thesipal mechanisms with good accuracy, in the simplest
conceivable, yet representative, model material. Sampéae of polydisperse disks in 2D, with a uniform diameter
distribution between Ba anda, are first assembled on isotropically compressing fridéiss particles, thus producing
dense packs with solid fractiof? = 0.84344 3 x 10~ and coordination numbex close to 4 in the large system
limit. Those values are extrapolated from data averageetsnos samples witihN = 1024, 3025 and 4900 disks. The
samples are enclosed in a rectangular cell framed by solid,\2=0f which are mobile orthogonally to their direction,
which enables us to carry out biaxial compression tests (id-inite system effects oh andz are mainly due to the
surrounding walls and can be eliminated (they are propuatito perimeter to area ratio).

F
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FIGURE 1. Schematic representation of the biaxial tests simulate2Dodisk sampleso, = F»/L; is kept constant, equal to the
initial isotropic pressur®, while g1 = F1/L; is stepwise increased.

Stress-increment controlled DEM simulations

Once prepared in mechanical equilibrium under an isotrppgssure?, disk samples, in which contacts are now
regarded as frictional, with friction coefficiept= 0.25, are subjected to biaxial tests as sketched in Fig. 1inStra
& = —ALy/Ly, & = —AL;/L;, “volumetric” straing, = €1 + & are measured in equilibrium configurations, while
the stress deviatar = g, — 07 is the control parameter. We use soil mechanics conventiong/hich compressive
stresses and shrinking strains are positiyds stepwise increased by small intervalg = 10-3P. The contact
model is the standard (Cundall-Strack [21]) one with norifial) and tangential K1) stiffness constants such
that Ky = 2Kt = 10PP. A normal viscous force is also introduced in the contactptider to reach equilibrium
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configurations faster. After each deviator step, one waitgte next equilibrium configuration, in which forces and
moments are balanced with good accuracy (with a tolerankesviEd°Pa for forces on grains, below 18PL for
forces on walls). We refer to this procedurestrgss-increment controllg&IC) DEM.

The stricly quasistatic approach: SEM calculations

Kn

v ‘

N
FIGURE 2. Normal (left) and tangential (right) contact behavior in @3k samples, as schematized with rheological elements:
springs with stiffness constarits, K1, dashpot with damping constamg;, plastic slider with threshold related to normal force by
coefficientu.

The static elastoplastic methoghereafter referred to as SEM), amounts to dealing withrtft@i sample configu-
ration as a network of springs and plastic sliders corredjpgrto contact behavior, as in Fig. 2 — with the dashpots
ignored, as they play no role in statics. The evolution of#ygem under varying load is determined as a continuous
trajectory in configuration space, each point of which is @milérium state. It has been implemented in [15, 3], and
a similar approach was used in [4]. The algorithm will not lesatibed here, as it is presented in [17]. It relies on
resolution of linear system of equations, with the form & thatrix (the elastoplastic stiffness matrix) depending on
contact status (nonsliding, sliding, open). The baseseétiproach are also discussed in [5].

SEM calculations are possible as long as only type | strarasoatained, and the results reported here [15]
correspond to the deviator interval<0q < q; in biaxial compressions from the chosen initial state (irncktall
tangential forces are equal to zero), in which a type | respasobtained.

Triaxial compression of 3D bead assemblies

Triaxial compression tests of assembliesNof= 4000 single-sized spherical beads of diametare simulated
by DEM, with the more standard procedure in which théal strain rateg, is kept constant (hereaftstrain-rate
controlledor SRC DEM). The deviator stresg, is measured, as a function of axial strain= &, asq = 01 — 03,
whereo; is the major (“axial”) principal stress conjugategg while the other two (lateral) principal stresses= 03
are kept equal to the initial isotropic pressiero allow for comparisons with laboratory experiments, ltleads are
attributed the elastic properties of glass (Young mod&us 70 GPa, Poisson ratip = 0.3) and friction coefficient
¢ = 0.3. The contact law is a somewhat simplified version of the Hbfindlin ones [22], as in Ref. [19], which
might be consulted for more details. It leads to favorablmgarisons of elastic moduli [20] obtained in simulations
and measured in experiments on glass beads. Preparatiohaflal samples with periodic boundaries in all three
directions (and thus statistically homogeneous and devbidall effects) under prescribed pressures in the range
10 kPa< P < 1 MPa is detailed in Refs. [19, 23]. It is shown [19] that oneyrohtain, depending on the assembling
procedure, for densities close to the random close packing® ~ 0.64 under low pressure, coordination numbers
ranging fromz ~ 4 (orz* ~ 4.5 if the “rattlers”, i.e., grains carrying no force, are axadtd from the count) ta= 6
(more exactlyz = 6, with 1 or 2% of rattlers) in the limit o — 0. As in [19], the low-coordination systen® ¢ 4.5)
are referred to as “C samples” in the sequel, while those ziith 6 are called “A samples”. We can thus assess the
influence of initial coordination number on the small strgire-peak) behavior of a dense material.
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Dimensionless control parameters

The contact law and the simulated mechanical test lead taefiaition of useful dimensionless numbers. The
inertia parameter I= &+/m/aP (in 3D) or | = &+/m/P (in 2D) characterizes the importance of inertial effects in
strain-rate controlled tests under presdRi{enis the grain mass). The parametéras been used repeatedly to describe
the state of granular materials in steady flow, both in expenits [24] and in simulations [25, 26, 27], or the departure
from equilibrium in a slow compression [23]. It also playsentral role in the recent formulation of a successful
constitutive law for dense granular flows [28].

The importance of contact deflections, relative to graimditera, is expressed by the stiffness numberwhich

2/3
is defined ax = Ky/P in 2D models with linear contact elasticity, andras= <m> with 3D beads and

Hertzian contacts. In both cases, typical contact deflestisatisfyh/a 0 k1 [19].
The three limits mentioned in the introduction can be defiagtl — 0 (quasistatic limit),k — co (rigid limit),
N — oo (macroscopic limit).

SIMULATION RESULTS

Biaxial testsin 2D

Type | response interval, quasistatic approach
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FIGURE 3. g (normalized byP) versusg; in SIC tests on 2 samples of 3025 disks, showing a very stifeiase (confused with
vertical axis), and then a staircase regime. Inset: detaibxy small strains, with comparison of SIC DEM and SEM cédtions.

In Fig. 3,q(&a) curves as obtained by SIC DEM are shown for two samples of 83%5. The curves first exhibit a
very sharp increase of deviatgrwhich, as revealed once the strain scale is blown up by arfaétL0* in the insert,
is in fact an interval of type | response: direct SEM caldolatare possible, and coincide with DEM results. The
smoothness of the stress variations versus strain in thgeria characteristic of a continuous trajectory of eqilim
states in configuration space. Beyond the transition to llygteain regimes, a staircase-shaped deviator curve &Fig.
is observed, exhibiting intervals of stability (nearly tieal parts of curve in Fig. 3), separated by rearrangemesrtts
(horizontal parts of curve in Fig. 3) in which the system gdiimetic energy before a new stable contact network is
formed. We could check that the SEM procedure is able to tepr@the stability intervals obtained with SIC DEM.
On reversing the load (stepwise decreasjg considerably larger deviator range is accessible to S&bllations,
and thus in regime 1, as illustrated by the two (quasi-val}idotted lines on the main plot of Fig. 3.
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TABLE 1. Average and standard deviation gf as ob-
tained over 26 samples with N=1024, 10 samples with
N=3025 and 6 samples with N=4900.

[ SEM|] N=1024 | N=3025 | N=4900 |

| (q1) || 0.750£0.050 | 0.774+0.033 | 0.786+0.024 |

Role of contact stiffness

As the system, in regime I, is equivalent to a network of gggiand plastic sliders (Fig. 2), type | strains are all
inversely proportional to stiffness level provided the compression that decrease®es not significantly affect the
sample geometry. The curves pertaining to differemtilues coincide if expressed with stress ratios and varsada,
as shown in Fig 4.
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FIGURE 4. Stress ratia/p (left) and rescaled volumetric strairg, (right) vs. rescaled axial straite; for k = 10° andk = 10,

Approach to the macroscopic limit

The staircase-shaped loading curves in regime Il shouldoagp in the large sample limit a smooth stress-strain
curve, as observed in very slow laboratory tests. To checthiapproach of such a macroscopic limit, the average
(g(&1)) and the standard deviatian(qg)(e1) are computed as functions of axial strain for sets of sampiekree
different sizes, and the region of tlag — q plane corresponding t@) (1) — a(q) < g < (g)(&1) + o(q) is shaded
on Fig. 5, darker zones corresponding to larger N. Fluatnatabout the average curve decrease as the system size
increases, and the insert shows that the standard deviasoaveraged over the intervakOe; < 0.02, regresses
asN~Y2. Thus staircase curves get smoothed in the large syster firhich implies that the “stairs” become
increasingly small and numerous: Bsincreases rearrangement events (microscopic instab)libecome smaller
and smaller, but more and more frequent. A similar regressiobserved for the volumetric strain curve.

Unlike the small type | response intervals observed witegime Il, the stability range < g; of the initial, isotropic
structure does not dwindle as the system size increasebofsidgn Table 1, the initial regime | deviator interval even
increases a little, approaching a finite limitlds— .

Our implementation of SEM involves no creation of new cotgdalthough this could be taken into account in a
more refined version). This approximation becomes exatigmigid limit of Kk — o, because a finite strain increment
is necessary for additional contacts to close, while tyfeairss scale ag ~1. The near coincidence of SEM and DEM
approaches, the latter involving contact creations, stibatsnew contacts are indeed negligible koe= 10°. g thus
represents the maximum deviator stress supported by thal icontact network, beyond which [5], due to contact
sliding and opening, an instability or a “floppy mode” appedrthe hallmark of such instabilities is the negativity of
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FIGURE 5. Main plot: sample to sample average @fersuse;. Shaded regions extend to one standard deviation about the
average, with, in this order, darker and darker shades gffgraN=1024, 3025, 4900. Insert: regression of fluctuatigmeportional

to N~1/2, Average standard deviationgq) anda (&) over interval 0< &; < 0.02.

the second-order work [5, 1A}iz.
A*W(AU) =AU -K - AU

for some direction of displacement increment vedtor. VectorAU comprises all increments of grain displacements
and rotations, an& is the stiffness matrix, which dependsga the status of contacts, on the direction &f.

AW (AU) <0 impﬂas that the increment of contact forces resultingrfra small perturbatioAU will accelerate
the resulting motion, whence a spontaneous increase dikirgergy.

Transition stress gand the “critical yield analysis” approach

One may wonder whetheyr, marks the upper boung, of the deviator interval for which contact forces balancing
the external load (i. e., statically admissible) and sgitigf Coulomb’s inequality (i. e., plastically admissiblegn
be found in the network. This is the “critical yield analysépproach to failure in structural mechanics. It is known
thatg; andqy would coincide if the sliding in contacts where friction igllfy mobilized implied dilatancy, with an
angle equal to the friction angle (the discrete analog ofassOciated” flow rule). Fig. 6 shows tt@tis well below
qu- With a dilatant sliding rule, the material response in lhxompression would be stiffer, and initially (rather
paradoxically) more contractant, and the deviator woudethel 3P (instead of about 8P) before failure of the initial
contact network.

Evolution of microscopic state variables

As mentioned above, contact creation is negligible in regiimnd the fabric evolution is essentially due to contacts
opening, mostly in the direction of extension (direction/&3 the initial coordination number is maximal, because of
the absence of friction in the assembling process, very fawacts are gained in the direction of compression. In the
initial state, all contacts only bear normal force compdsaehRriction mobilization is gradual, but the proportion of
sliding contacts, as shown in Fig. 7 steadily increases rera in regime I, and reaches an apparent plateau in regime
Il. This means that the interval of elastic response is¢cthfrspeaking, reduced to naught, even though the stress-
strain curve campproximatelybe described as elastic in a very small range. The appeao&stiding contacts can
effectively reduce the degee of static indeterminacy irstrstem. If the status is assumed to be fixed for all contacts,
the Coulomb condition, satisfied as an equality, reducesuh&er of independent contact components fralNAin
2D) to 2N: — xs, With xs the number of sliding contacts among a totalNgf It has been speculated [29, 30] that failing
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FIGURE 6. Comparison of SEM calculation with the normal (parallelrvas marked “n. a.” for non associated) and the
“associated” (dilatant, curves marked “a.”) sliding rubecontacts in sample with 1024 disks.
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FIGURE 7. Inasample with N=3025, degree of force indetermina¢solid line) and proportion of sliding intergranular cocts
Xs/Nc (dotted line), versus axial stra&i.

contact networks (regime Il) should correspond to vangiidamce indeterminacy. The data of Fig. 7 provide evidence
against such a prediction, bstabilizes to about 600, a moderate (10% of the total numicdegrees of freedom in a
sample of 3025 disks), yet finite value.

3D triaxial tests

The simulations reported here compare dense states A (baytioation number) and C (low coordination number).
State A is similar to the dense disk sample studied in theipusvsection, as both were initially assembled with
frictionless grains. (A samples, once packed under lowgures are nevertheless compressed to the desired confining
pressure with the valug = 0.3 of the friction coefficient used in the triaxial tests [19Pressure values correspond
to glass beads, and vary between 10 kiPa=(39000) and 1 MPax = 1800). We first check for the approach of
the quasistatic and the macroscopic limit in 3D, straim-amntrolled DEM simulations, then discuss the influence of
coordination number, and regimes | and 11, in the light of pnevious 2D study.
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Reproducibility, quasistatic limit

As the system size increases, sample to sample fluctuationfdsregress, as checked in 2D (Fig. 5). Our 3D results
are based on 5 samples of 4000 beads of each type, and Figcl&dbestress-strain curve reproducibility in both A
and C cases, for small axial strains. Thanks to the fullyguiciboundary conditions [19], the macroscopic mechanical
behavior is quite well defined witN = 4000. The approach to the quasistatic limit, in SRC testsheaassessed on
checking for the innocuousness of the dynamical parametersinertial numbet, and reduced damping parameter
{.  is defined as the ratio of the viscous damping constant in tacbto its critical level, given the instantaneous
value of the stiffness constant. We found it convenient ®aisonstant value @f in our simulations, as in [19]. Fig. 8
also shows that provided inertial numbercharacterizing dynamical effects, is small enough, baahd{ become
irrelevant. Fig. 8 shows that the quasistatic limit is cotiyeapproached for < 10-3, quite a satisfactory result, given
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FIGURE 8. Left: small strain part ofj(€a) curves for 5 different samples of each type, A (top curves)@rfbottom ones) with
N = 4000 beads. Rightj(ea) andey(&a) curves in one type C sample for the different valueg ahdl indicated.

that usual laboratory tests witg ~ 10> s~ correspond td < 10-8,

Influence of initial coordination number

Fig. 9 compares the behavior of initial states A and C, inxtalcompression withP = 100 kPa k ~ 6000).
Although, conforming to the traditional view that the pealvidtor stress is determined by the initial sample density,

1.5\\\\‘\\\\‘\\\\‘\\\\‘\\7

€
PR N RS IS T SR N A

0
0 0.01 0.02 0.03 0.04

FIGURE 9. (q(&a) (left scale) andky(€a) (right scale) curves for A and C states unéfer 100 kPa. Averages over 5 samples of
4000 spherical grains.

maximumg values are very nearly identical in systems A and C, the rimaltibn of internal friction is much more
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gradual for C. For A, the initial rise of deviatgifor small axial strain is quite steep, and the volumetriaistwariation
becomes dilatant aimost immediately, far~ 10~3. In [20] it was shown that measurements of elastic moduliole®
information on coordination numbers. It is thus conceiedblinfer the rate of deviator increase as a function of axial
strain from very small strain~( 10> or below [7, 20]) elasticity. Most experimental curves aia on sands, which

do not exhibitg maxima or dilatancy beforeg, ~ 0.01, are closer to C ones. However, some measurements on glass
bead samples [31] do show fast risegja@t small strains, somewhat intermediate between numeassalts of types

A andC.

Influence of contact stiffness

The small strain (saga < 5.10°%) interval for A samples, with its fagj increase, is in regime |, as one might
expect from 2D results on disks. This is readily checked oangimg the confining pressure. Fig. 10 shows the
curves for triaxial compressions at differdptvalues (separated by a factgfl0) from 10 kPa to 1 MPa, with a
rescaling of the strains by the stiffness parametein one A sample. Their coincidence fqfP < 1 evidences a
wide deviator range in regime I. For larger strains, curvgsasate on this scale, and tend to collapse together if
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FIGURE 10. Left: q(e5)/P and &,(ga) curves for one A sample and differeRtvalues. Strains on scal@®/Py)%/3 0 k1,
Po =100 kPa. Rightq(ea) /P for the samé® values in one C sample. Inset: detail with blowneugrale, straight lines corresponding
to Young moduli in isotropic state.

q/P, & are simply plotted versus,. The strain dependence on stress ratio is independent fvataa stiffness. This
different sensitivity to pressure is characteristic ofimeg Il. Fig 10 also shows that it applies to C samples almost
throughout the investigated range, down to small devigetsehavior closer to usual experimental results than type
A configurations). At the origin (close to the initial isofrio state, see inset on fig. 10, right plot), the tangent to the
curve is given by the elastic (Young) modulus of the granmlaterial Eq, and therefore|/P scales withk, but curves
quickly depart from this behaviour (around- 0.2P). The approximately elastic range [20] is quite small, aseobed

in experiments [7, 32, 33].

Calculations with a fixed contact list

Within regime I, the mechanical properties of the matergad be successfully predicted on studying the response of
one given set of contacts. Those might slide or open, butéhgfew new contacts that are created can be neglected.
To check this in simulations, one may restrict at each tirap #ite search for interacting grains to the list of initially
contacting pairs. Fig. 11 compares such a procedure to timplete calculation. The curve marked “NCC” fno
contact creatioris indistinguishable from the other one f@e> 0.8. We thus check that, in regime |, the macroscopic
behavior is essentially determined by the response of a éiathct network.
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FIGURE 11. Very small strain part ofj(ea) curve in one A sample, showing beginning of unloading curfeesows). Curve
marked NCC was obtained on calculating the evolution of #messample without any contact creation.

Type | strains and elastic reponse

Fig. 11 also shows that the small strain response of A sampl#sn regime I, close to the initial state, is already
irreversible: type | strains are not elastic. An approxihatlastic behavior is only observed for very small strains
as depicted in the inset of Fig. 10 (right part). In this sniatiérval near the initial equilibrium configuration, the
stress-strain curve is close to its initial tangent, defimgthe elastic modulus. Moduli [20] can be calculated from th
stiffness matrix of contact networks. One may also checkttimunloading curves shown on Fig. 11 (and the ones
of Fig. 3 in 2D as well) comprise a small, approximately etapart, with the relevant elastic modulus (the Young
modulus for a triaxial test at constant lateral stress) dejithe initial slope. At the microscopic level, a small ¢las
response is retrieved upon reversing the loading diredt@rause contacts stop sliding. The elastic range is gtrictl
included in the larger range of type | behavior.

Fluctuations and length scale

Finally, let us note that regimes | and Il also differ by thepwntance of sample to sample fluctuations: curves in
Fig. 8 (left plot) pertaining to the different samples of ¢yA or C are confused as long gs< 1.1P (case A) or
g < 0.3P (case C), which roughly corresponds to the transition fregime | to regime Il. Larger fluctuations imply
that the characteristic length scale associated with thglattement field (correlation length) is larger in regime I
Whether and in what sense rearrangements triggered byilitsta in regime Il, in a material close to the rigid limit
(largek), can be regarded as local events is still an open issue.

CONCLUSION

Numerical studies thus reveal that the two regimes, in wihietorigins of strain differ, exhibit contrasting propesi
Although the reported studies in 2D and 3D differ in many ez$p (linear versus Hertzian contacts, wall versus
periodic boundaries, SIC versus SRC DEM), the same phermmere observed in both cases. Regime | corresponds
to the stability range of a given contact structure. It igyéarin highly coordinated systems. It is observed in the
beginning of monotonic loading tests, in which the deviatogss increases from an initial isotropic configuratiow, a
also after changes in the direction of load increments (@arioss in friction mobilization). Strains, for a given sfge
level, are then inversely proportional to contact stifsess The deviator range in regimek< gz, in usual monotonic
tests, is stricly larger than the small elastic range, hidtst smaller than the maximum deviator. It does not vanish
in the limit of large systems, unlike in the singular caseigid;, frictionless particle assemblies [13, 34]. Regime | i
limited by the occurrence of elastoplastic instabilitieshe contact network and does not coincide with the predficti
of the critical yield approach. In regime |, the work of theéemxally applied load is constantly balanced by the one of
contact forces, so that the kinetic energy approacheszeheilimit of slow loading rates. A remarkable consequence
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is that the instability condition based on the negativityhef macroscopic second-order work [35] is never fulfilled,
as macroscopic and microscopic works coincide, and ther lettpositive. In regime Il, network rearrangements are
triggered by instabilities and some bursts of kinetic eparg observed [14]. Larger fluctuations witness longegeah
correlations in the displacements. The microscopic oriimacroscopic strains, which are independent on contact
elasticity for usual stiffness levels lies in the geometry of grain packings.

On attempting to predict a macroscopic mechanical respmosepacking geometry and contact laws, the infor-
mation about which kind of strain should dominate is crucial

A promising perspective is the study of correlated motissoaiated with rearrangement events.
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