
Transitions in the response of a granular layer

A. P. F. Atman∗, P. Claudin†, G. Combe∗∗, C. Goldenberg† and I. Goldhirsch‡

∗Departamento de Física e Matemática and National Institute of Science and Technology for Complex Systems,
Centro Federal de Educação Tecnológica de Minas Gerais, CEFET–MG, Av. Amazonas 7675, 30510-000,

Belo Horizonte-MG, Brazil.
†Laboratoire de Physique et Mécanique des Milieux Hétérogènes, (PMMH UMR 7636 CNRS – ESPCI – Univ.

P6 & P7), 10 rue Vauquelin, 75231 Paris Cedex 05, France.
∗∗Grenoble Universités - Laboratoire Sols, Solides, Structures - Risques, BP 53 - 38041 Grenoble cedex 09,

France.
‡School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Ramat-Aviv, Tel Aviv 69978,

Israel.

Abstract. The response of two dimensional granular slabs to vertical localized loads has been studied using MD simulations,
and characterized by a function that measures the departure of the response from linearity. This function is usually
continuously increasing, but in some cases it experiences distinct jumps. A study of the corresponding force chain network
reveals that these jumps are associated with the establishment or loss of “critical” contacts to which the system is highly
sensitive.
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INTRODUCTION

The properties of densely packed granular materials in

both the static and flowing states are of much current in-

terest [1, 2], mostly due to the unusual properties often

exhibited by these systems and their industrial and en-

vironmental importance. Some successful phenomenolo-

gies have been developed in the realm of dense granular

flows [3]. The transition between the static state and the

flowing state of a granular system is often associated with

the “jamming transition”; much effort has been directed

towards the elucidation of the nature of this transition

[4, 5, 6, 7]. The jamming transition can be approached

from the flowing side or the static side. Here we focus on

the latter but do not study the transition as such. Prior to

reaching the putative jamming point a solid granular sys-

tem must experience changes induced by external forces;

these can cause the necessary plastic events that precede

the transition to flow. It is the goal of this paper to shed

some light on this process.

A rather well researched granular system is that of a

vertical, 2D or 3D slab, subject to a point-force at its

top. When this force is sufficiently small the response

of the slab is elastic, as revealed in the study of Lennard-

Jones glasses [8] and theoretical and experimental stud-

ies of granular slabs [9, 10, 11, 12, 13, 14, 15]. Suffi-

ciently large forces induce rearrangements of the pack-

ing [16] and departures from elasticity [17, 18, 19]. In

Lennard-Jones glasses, these rearrangements are associ-

ated with quadrupolar localized events and shear bands

[20]. In granular systems, sufficiently large forces cause

significant amounts of sliding contacts, the establishment

of new contacts and the severing of others. Below we

demonstrate that the departure of the response of a gran-

ular slab from linearity (hence, linear elasticity) proceeds

smoothly as the external force is increased but at times it

exhibits significant jumps which are results of changes

in some critical contacts, often single contacts. Clearly

the sensitivity of the system’s response to such singular

events is stronger the smaller the system and therefore,

as shown in [18], these rare but strong jumps are con-

sequential in not-too-large systems on a global scale but

only locally (near the point of application of the force) in

sufficiently large systems.

NUMERICAL METHOD AND ANALYSIS

The Cundall and Strack model [21, 22] for the parti-

cle interactions is employed. Damping is implemented

along the normal direction only and set to its critical

value. Coulomb friction is accounted for. Our molecu-

lar dynamics (MD) code employs a third order predictor-

corrector integration scheme for solving Newton’s equa-

tions of motion with the above model interactions. The

studied systems are two-dimensional vertical layers typ-

ically comprising a few thousand polydisperse grains.

First, the system is prepared by a sequential deposition

of grains and run till static equilibrium is obtained, as

judged by a rather stringent set of criteria [13, 19]. Next,



FIGURE 1. The measure, ∆, for a single realization of the
slab. Z is the mean height of the externally forced particles.
Details on the configurations denoted by A, B and C are shown
in Fig. 2. The inset show the averaged stress profile for the en-
tire layer. Though some individual response profiles are double
peaked, the mean averaged response is always single peaked.

a grain close to the surface is selected and a downward

pointing vertical force, whose norm is slowly increased

to a chosen final value, F , is applied to it. The simulation

is then continued until a new static state is reached. The

response of the layer is defined as the stress field differ-

ence between the loaded state and the unloaded one.

The stress response function is computed from the

contact forces and grain positions, using an exact coarse

graining method [23, 24]. The result depends weakly

on the choice of a coarse graining function, Φ, and

coarse graining scale,W . Within the range d <W < 10d

(d is the mean grain diameter), the stress exhibits a

plateau whose width increases upon ensemble averaging

[14]. Here, we use W ≃ 6d and focus on the vertical

component of the response at the bottom of the layer,

σzz. Examples of the variation of σzz with the horizontal

distance to the point of application of the force, x are

shown in the inset of Fig. 1. These profiles have been

obtained for different values of the force, and normalized

by F in order to show the linearity of the response.

We define a measure of the deviation of the response

from linearity as follows:
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where the subscript i denotes the 2L fixed grains at the

bottom of the layer. F0 = 0.125〈m〉g is a reference small

overload force. ~Fi and ~F0i are the forces exerted on grain

i in the considered and reference states, respectively.

Clearly, ∆ is the RMS of the normalized difference be-

tween the response profiles. Obviously, ∆→ 0 indicates

that the response is linear (as expected for small loads).

FIGURE 2. Contact force networks for the granular layers
that correspond to points A, B and C in Fig. 1. The insets show
the corresponding stress response functions. Note the increase
in the number of rearrangements with increasing load.

The dependence of ∆ on F , for nearly four decades of the

latter (0.125 <
F
〈m〉g < 400), is displayed in figure 1. One

can see a low plateau at small and moderate values of F ,

corresponding to the linear (elastic) regime, followed by

an increase of ∆ at larger forces.

Figure 2 depicts the force contact network correspond-

ing to selected points in Fig. 1: the grains are shown as

circles and (response) contact forces are denoted by lines

that connect the grain centers and whose widths indicate

the relative strength of the forces. Only forces larger than

2% of the external load are shown. Red/black lines indi-

cate that the contact force is larger/smaller than in the

reference state. A grey rectangle is drawn just above the

loaded grain; its size is proportional to the magnitude of

the external force. Blue discs represent pairs of grains

that established contact and red ones indicate severing of

the corresponding contact with respect to the reference

state. The results presented below have been obtained



FIGURE 3. The measure, ∆, for a single realization that ex-
hibits a noticeable discontinuity that corresponds to a structural
rearrangement in the layer structure, see Fig. 4. The inset cor-
responds to a small force range around the discontinuity (with
a step of 0.01 < m > g to capture the jump at 16.49〈m〉g).

from the analysis of 5 slabs comprising 3721 grains each.

A total of 121 points of application of the external force

and 24 different values of the magnitude of this force

have been studied.

RESULTS AND DISCUSSION

The increase of the measure, ∆, with F can be continuous

and monotonic, like in Fig. 1, and is associated with

a slow and continuous widening of the stress response

profiles: this is the generic case. It can also exhibit abrupt

changes or “jumps”, as illustrated in Figs. 3 and 5. These

strong discontinuities correspond to significant changes

in the stress response functions: in Fig. 4 one observes

that a double-peaked profile changes into a single-peaked

one whereas in Fig. 6, a reverse transition occurs. There

are also smaller discontinuities that do not seem to have

a prominent effect on the stress response profiles.

At the microscopic level, two kinds of rearrangements

can arise. A contact can slide when the tangential to nor-

mal force ratio exceeds the Coulomb criterion. Contacts

can also open or close. These events are often highly

localized but at times they affect many of their neigh-

bors. Rearrangements that take place far from the point

of application of the external force do not have much of

an effect on the value of ∆ or the stress response pro-

file whereas rearrangements that occur in the vicinity of

the point of application of the external force and in par-

ticular those that affect strong force chains that emanate

from this point induce significant changes in the contact

force distribution and the corresponding stress response

profiles.

Goldenberg and Goldhirsch [17, 18] discovered that

FIGURE 4. Contact force network corresponding to Fig. 3.
Note the parallel transition in the stress response profiles shown
in the insets. A new contact that transmits a relatively large
force has been established near the point of force application.

the stress response functions for forced 2D slabs undergo

a transition from a single peaked to a double peaked

shape as the force is increased. The latter case was iden-

tified as resulting from major rearrangements (mostly,



FIGURE 5. Yet another sharp transition as a function of the
external force and a corresponding zoom of the neighborhood
of the transition. Here the value of the force at the discontinuity
is F = 9.77〈m〉g. The notation is as in Fig. 3.

FIGURE 6. The contact force network that corresponds to
Fig. 5. The stress response function shown in the insets exhibits
a transition that is the reverse of the one shown in Fig. 4.

the severing of contacts) that (nearly) reach the bottom

of the slab and as such are finite size effects (for a very

large system the same force does not lead to such a global

rearrangement). The systems studied here are character-

ized by a stronger polydispersity and disorder then theirs

and are therefore richer in the types of behavior they ex-

hibit. However, the basic conclusion concerning the fact

that the observed changes in the stress response function

qualify as finite size effects carries over to the cases con-

sidered here.

Interestingly, stress jumps have also been observed

and carefully characterized by Combe and Roux [25] in

numerical biaxial tests performed on samples comprising

poly-disperse, rigid and frictionless grains. Such systems

generically form isostatic packings, i.e. they are at the

jamming transition - the intergranular contact network is

just sufficient to support an external loading [26, 27] and

exhibit ‘soft modes’ by which the system can rearrange at

vanishing energy cost [27, 28]. Combe and Roux found

that the stress-strain curves corresponding to the systems

they studied consist of successions of steps that persist

even in the limit of large systems - the axial strain depen-

dence on deviatoric stress is a Lévy stochastic process.

Their findings may not carry over to systems of frictional

grains [29].

While the study presented here is still a long way from

making contact with the properties of the jamming tran-

sition, we believe it presents some properties that may

hold even near that transition and help further elucidate

its nature. Other interesting systems to be studied using

similar methods would be inclined slabs just below the

angle of repose. Further studies that distinguish between

finite size effects and properties that survive system-size

upscaling, are in order as well.
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