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Abstract. We study the macroscopic behaviour of granular material, as a consequence of the interactions of individual grains
at the micro scale. A two-scale approach of computational homogenization is considered. On the micro-level, we consider
granular structures modelled using the Discrete Element Method (DEM). Grain interactions are modelled by normal and
tangential contact laws with friction (Coulomb’s criterion). On the macro-level, we use a Finite Element Formulation (FEM).
The upscaling technique consists in using the response of the DEM model at each Gauss point of the FEM discretisation to
derive numerically the constitutive response. In this process, a tangent operator is generated together with the stress increment
corresponding to the strain increment in the Gauss point. In order to get more insight on the consistency of the resulting
constitutive response, we compute the determinant of the acoustic tensorassociated with the tangent operator. This quantity
is known to be an indicator of a possible loss of uniqueness locally, at the macro scale, by strain localisation in shear band.
Different numerical studies have been performed, as listed hereafter. We have considered different number of grains in the
REV cell. Periodic boundary conditions have been compared with the ordinary wall conditions.
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INTRODUCTION

The objective of the study presented is to connect micro
and macro computational methods in a unified two-scale
approach. At the micro level, we consider granular model
in 2D with round rigid bodies (grains) in the framework
of molecular dynamic method (MD). At the macro level,
we use a Finite Element Method (FEM) model. The link
between the two scales is made through the constitutive
response of the granular microstructure in a macroscopic
Gauss point of the FEM model, which is obtained nu-
merically. Indeed, by numerical homogenization of the
results of the MD computations, we obtain the average
stress over our REV as a response to the imposed FEM
deformation history. In the same time, we derive numer-
ically the tangent stiffness matrix at the Gauss point, and
we are able to compute the acoustic tensor, which charac-
terizes the possibility of instable behaviour. The stability
zones depend on numerical parameters used in the com-
putations. The influences of some of them are presented
in what follows.

MECHANICAL MODELLING OF THE
MICRO-SCALE: DEM

The system consist of a set ofN polydisperse discs,
with the random radii homogeneously distributed be-
tweenRmin and Rmax = 2.5Rmin. This system is simu-
lated using a discrete element method - molecular dy-
namic with a third-order predictor-corrector scheme [2].

All grains interact via a linear elastic law and Coulomb
friction when they are in contact[1]. The normal contact
force fn is related to the normal apparent interpenetra-
tion δ of the contact asfn = knδ , wherekn is a normal
stiffness coefficient (δ > 0 if a contact is present,δ = 0
if there is no contact). The tangential componentft of
the contact force is proportional to the tangential elas-
tic relative displacement, with a tangential stiffness co-
efficientkt . The Coulomb condition| ft | ≤ µ fn requires
an incremental evaluation offt in each time step, which
leads to some amount of slip each time one of the equal-
ities ft = ±µ fn is imposed. A normal viscous compo-

FIGURE 1. Shape of the PLC sample with normal contact
forces (left) and cell of the sample with rigid walls (right)

nent opposing the relative normal motion of any pair of
grains in contact is also added to the elastic forcefn to
obtain a critical damping of the dynamics. We consider
two different boundary conditions:Periodic Limit Con-
dition (PLC) andrigid wall (WLC), cf. Fig.1.



MACRO LINK

Macroscopic constitutive law

For a given history of the deformation gradient, we
need to calculate the global stress response. The macro-
scopic stress results from the average formulaσi j =
1
S∑Nc

c=1 f c
i · lc

j ; i, j ∈ {x,y}, whereS is the area of the
sample,f c

i andlc
j are respectively the componenti of the

force acting in the contactc and the componentj of the
branch vector joining the mass centers of two grains in
contact [3]. Next, we convert the Cauchy stress into the
Piola-Kirhoff stress [4]. The Piola-Kirchoff stress is de-
pended on the history of thegradient of deformationF
[5], [6]

P(t) = Γt{F(τ),τ ∈ [0, t]} (1)

For any history ofF , we assume thatP admits at any time
t a right derivativeṖ with respect tot:

Ṗ = limδ t→0
P(t +δ t) − P(t)

δ t
(2)

We assume also that, a history ofF till time t being given,
the right time derivativėP depends only on the right time
derivativeḞ of F :

Ṗ = Θ(Ḟ) (3)

where the functionΘ is generally non-linear with respect
to its argumenṫF .
In the following, we limit the study to the case when the
history of F is given byF = I + αG0 with G0 being a
fixed tensor andα being the loading parameter which
plays a role oft and runs monotonously from 0 to 1.
In this case we get:̇P = Ξ(α) and by differentiating
with respect toα, we get thatḞ = G0 along the path.
According to the definition of the functionΘ we can
write the approximate formula [5], [6]:

Θ(G0) ≈
Ξ(α +∆α) − Ξ(α)

∆α
(4)

Macroscopic loss of stability - Acoustic
tensor

The loss of uniqueness for the rate of boundary value
problems is analysed through Rice’s approach [8]. Fol-
lowing this analysis we look for a rate gradientḞ which
is discontinuous along the boundary of a localization
band. It is known that such a discontinuity can be written
as [8]:

˙
F1

kL =
˙

F0
kL +qkNl (5)

whereN is the normal (||N|| = 1) to the interface,Ḟ1 is
the rate gradient on the same side as N of the interface

and Ḟ0 on the other side. The stress vector has to be
continuous through the interface, that reads:

( ˙
P1

iJ −
˙

P0
iJ

)

NJ = 0 (6)

As
˙

P1
iJ and

˙
P0

iJ are linked to
˙

F1
iJ and

˙
F1

iJ , by Eg. (3), the
unknowsq andN have to satisfy equation

(

ΘiJ

(

Ḟ0 +q⊗N
)

−ΘiJ

(

Ḟ0
))

NJ = 0 (7)

whereḞ0 is given.
In the considered macroscopic quasistatic deformation
process, the question of loss of ellipticity therefore
comes down to determining the valueα such as Eq. (7)
has a non-trivial solution(q,N), q 6= 0.
In our case we restrict the search of a non-trivial solution
to the case where the tensorḞ1 is closed toḞ0. This leads
to a continuous bifurcation mode in the sense of Rice [8].

So, assuming thatΘ is differentiable atḞ0, eq. (7) yields
after linearization:

BiJkL

(

Ḟ0
)

qkNLNJ = 0 (8)

where BiJkL

(

Ḟ0
)

= ∂ΘiJ

∂ Ḟkl
|
Ḟ=

˙
F0

It is clear that a non-

trivial solution exists only if the so-calledacoustic tensor
Q defined byQik = BiJkLNLNJ is singular, that is only if:

det Q= 0 (9)

For this particular process considered here and given by
F = I + αG0, we have seen thaṫF is constant and equal
to G0, and the functionΘ(G0) can be approximated by
Eq.(4).
As to the derivation ofΘ, it can be numerically approxi-
mated by this finite difference:

BiJkL =
ΘiJ(G0 + ε∆kL)−θiJ(G0)

ε
(10)

where∆kL is a second-order tensor such as all its com-
ponents are equal to 0 exceptkL which are equal to 1.
Finally, in Fig. 2 we have calculated the stress at the
point δ f ∆α (in the same linear direction as point n) and
stresses in points with perturbationsε∆kL. Than we have
calculated the matrix tangent by [5], [6]:

BiJkL =
PiJ(αn+1 +δ f ∆α + ε∆kL) − PiJ(αn+1 +δ f ∆α)

δ f ε∆kL

(11)
whereδ f ∆α is a small variation step in the main direc-
tion, ε∆kL is a small perturbation in the directionkL.



FIGURE 2. Schematic representation of the computation of
the tangent matrix
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FIGURE 3. Mean stress and standard deviation for PLC
samples

RESULTS

The normal stiffness of contact in the DEM is such that
the stiffness parameter [9]κ = kn/σ0 = 1000, whereσ0
is an isotropic stress applied to the grain assemblies. The
value of the tangential stiffness is equal to the normal
stiffnesskt = kn. Friction for the tangential contact law
is taken asµ = 0.5. All tests were done with similar

Inertial number I= ε̇
√

<m>
σ0

[7], where ε̇ is the strain

rate,< m > is the mean mass of grains. For all testI
was set between 1.2·10−3 to 2.1·10−3 for iterations, and
6·10−5 to 2.1·10−3 for the small variation stepδ f ∆α.

We have considered different number of grains (from
400 to 9801) in samples and different boundary condi-
tions.

The first test was made for abiaxial configuration with
no volumetric changes,εv = εxx+ εyy = 0. We have im-
plemented a strain-controlled loading to get the overall

stress response. The final strain isε =
[

0.2
0

0
−0.2

]

(nega-

tive values for compression). We have performed 10 tests
for each size of sample and we have calculated mean
values for stress and its standard deviations. Results of
the stress-strain diagram for different size of the samples
are presented for PLC on figure 3 and for WLC on fig-
ure 4. The y-axis is aq/p, whereq = (σyy−σxx)/2 and
p= (σyy+σxx)/2. We can observe that mean stress ratio
q/p is increasing when the number of grains is decreas-
ing, either for PLC and WLC. Nevertheless, this differ-
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FIGURE 4. Mean stress and standard deviation for WLC
samples
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FIGURE 5. Influence of the size of sample on macroscopic
stability (to be more clear diagrams are moved up on y-axis).

ence still small. On the other hand the standard deviation
is decreasing with increase of sample size and over 3025
grains it is constant (figures 3 and 4).

Next, we performed tests for checking the stability in
the macro level (biaxial test with and without volume
changing, uniaxial and shearing) [8]. They were done for
samples with 400, 1024, 3025 and 4900 grains.

The influence of the sample size for shearing test
for Piola-Kirchhoff stressPK12 is presented on figure
5. Stars symbols represent instability points, that cor-
respond to thedetQ< 0, whereQ is the acoustic ten-
sor. This test was made forδ f = 0.1 and perturbation
ε∆kL = 2 ·10−6. One can observe that if the size of sam-
ple the is increasing we obtain more important stability
zones. We have also done tests to check the influence of
the size of the small variation stepδ f ∆α and the small
perturbationsε∆kL. Values for the small variation step
δ f were between 0.05 to 1 and for perturbations from
2 ·10−6 to 2·10−3. In this case we have obtained more
stability zones for smaller values of small variation step
δ f ∆α and for smaller values of perturbations value.

It is important to link macro-instability points with
events representing their cause/origin at the micro level.
To do this we are using thefluctuation of the grain
~δ mn

i = (~rn
i −~rm

i )−∆ε~rm
i , where~rm

i ,~rn
i are the positions

of the grain i in stepsm and n, respectively, and∆ε
is the increment of shear strain from stepm to n. δmn
is a displacement, that measures the shift of the grain
with respect to its position as defined by the macroscopic
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FIGURE 6. Fluctuation of grains for stepα and perturba-
tions (crosses correspond with the instability points)

strain Next we compute the mean value of fluctuation for
all grains in the cell for one iteration (∆ε is constant):
〈δ 〉 = 1

N ∑N
i=1‖δ mn

i ‖2 whereN is the number of grains.
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FIGURE 7. Maps of fluctuations for variation step for stabil-
ity (top) and instability (bottom) points

In figure 6 we can observe differences between mean
value of fluctuation for all four perturbations and fluc-
tuation of the small variation stepδ f ∆α = 0.1 and
instability zones in the sample with 3025 grains. One
can observe that we have instability zones when the
difference between fluctuations is big. If the difference
is small normally we have stability.

In the figure 7 we have presented maps of fluctuations
for shearing for small variation stepδ f ∆α = 0.1 for
sample with 3025 grains. On the top we have fluctuations
map for stability point and on the bottom for instability
(for ε12 = 0.102 andε12 = 0.108, respectively). The
plotted idem is multiplied by 400 to make the diagram
more clear.

One can see that at an instability point we get some
’relaxation’ zone. We have observed that, in instability
points, between small variation step and perturbations
step we loose (or we get more) contacts between grains
(or the normal forces are really small) . For stability we
have almost no different of the number of contacts (one
or two grains) while for instabilities this value is even 10
for all directions of perturbation.

CONCLUSIONS

We can observe that boundary condition has some influ-
ence on mean stress and standard deviation, but this in-
fluence is relatively small. For the mean stresses for PLC,
the sample size does not play an important role, but for
stability zones it has huge influence. It is very important
for stability zone, to make the correct choice for the size
of the sample (not too small). It is also very important
to choose the correct small variation stepδ f and small
perturbationε∆kL.
In the micro level we can observe a behaviour dependent
on this coefficients, allowing us to identify the origin of
instabilities in the macroscopic response. Some grains in
instability regime loose their contact during small vari-
ation steps and perturbations. It is very important to re-
duce the number of those grains in every step (changing
the numerical parameters). After resolving this problem,
it is possible to connect the macro-micro codes and per-
form calculations for more complicated samples.
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