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Abstract. We study the macroscopic behaviour of granular material, as a carseg|of the interactions of individual grains
at the micro scale. A two-scale approach of computational homogemizatmonsidered. On the micro-level, we consider
granular structures modelled using the Discrete Element Method (DEM)n @teractions are modelled by normal and
tangential contact laws with friction (Coulomb’s criterion). On the macvelleve use a Finite Element Formulation (FEM).
The upscaling technique consists in using the response of the DEM ntosbdtaGauss point of the FEM discretisation to
derive numerically the constitutive response. In this process, a taagerator is generated together with the stress increment
corresponding to the strain increment in the Gauss point. In order to get imsight on the consistency of the resulting
constitutive response, we compute the determinant of the acoustic essamiated with the tangent operator. This quantity
is known to be an indicator of a possible loss of uniqueness locally, at theoreeale, by strain localisation in shear band.
Different numerical studies have been performed, as listed hereaftehave considered different number of grains in the
REV cell. Periodic boundary conditions have been compared with theasydivall conditions.
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INTRODUCTION All grains interact via a linear elastic law and Coulomb
friction when they are in contact[1]. The normal contact

The objective of the study presented is to connect micrdorce f, is related to the normal apparent interpenetra-
and macro computational methods in a unified two-scaldion ¢ of the contact ad, = k,0, wherek, is a normal
approach. At the micro level, we consider granular modektiffness coefficientd > 0 if a contact is presen§ = 0
in 2D with round rigid bodies (grains) in the framework if there is no contact). The tangential compon&nof
of molecular dynamic method (MD). At the macro level, the contact force is proportional to the tangential elas-
we use a Finite Element Method (FEM) model. The link tic relative displacement, with a tangential stiffness co-
between the two scales is made through the constitutivefficientk; . The Coulomb conditionf;| < u f, requires
response of the granular microstructure in a macroscopian incremental evaluation df in each time step, which
Gauss point of the FEM model, which is obtained nu-leads to some amount of slip each time one of the equal-
merically. Indeed, by numerical homogenization of theities fi = £uf, is imposed. A normal viscous compo-
results of the MD computations, we obtain the average - NAANE AT
stress over our REV as a response to the imposed FEM o~ o/
deformation history. In the same time, we derive numer- 1~ 37
ically the tangent stiffness matrix at the Gauss point, and |/ -4
we are able to compute the acoustic tensor, which charac- 7/ g£
terizes the possibility of instable behaviour. The stapili :
zones depend on numerical parameters used in the com- -7
putations. The influences of some of them are presented /.
in what follows. K

FIGURE 1. Shape of the PLC sample with normal contact
forces (left) and cell of the sample with rigid walls (right)

MECHANICAL MODELLING OF THE

MICRO-SCALE: DEM nent opposing the relative normal motion of any pair of
grains in contact is also added to the elastic fofgéo
The system consist of a set &f polydisperse discs, Obta"? a critical damping of t.he dyne}mips. .W? consider
with the random radii homogeneously distributed be-tV.V9 different bou.n(_jary cond|t|on§?er|qd|c Limit Con-
tween Rmin and Rmax = 2.5Rmin. This system is simu- dition (PLC) andrigid wall (WLC), cf. Fig.1.
lated using a discrete element method - molecular dy-
namic with a third-order predictor-corrector scheme [2].



MACRO LINK and FO on the other side. The stress vector has to be
continuous through the interface, that reads:
M acroscopic constitutive law L
. | | (P - PS)No =0 ®)
For a given history of the deformation gradient, we

need to calculate the global stress response. The macro- —- =5 _ = =
scopic stress results from the average formaja=  AS R andF; are linked toFy andFj, by Eg. (3), the

%2&1 fi°'|f? i,j € {xy}, whereS s the area of the unknowsq andN have to satisfy equation

sample,f’ and|} are respectively the componerdf the =5 =5

force acting in the contactand the componerjtof the (eiJ (F +a® N) -Gy (F >) Ng=0  (7)
branch vector joining the mass centers of two grains in _

contact [3]. Next, we convert the Cauchy stress into theyhereF0 is given.

Piola-Kirhoff stress [4]. The Piola-Kirchoff stress is de- |n the considered macroscopic quasistatic deformation
pended on the history of thgradient of deformatior  process, the question of loss of ellipticity therefore

(5], [6] -~ -~ comes down to determining the valaesuch as Eq. (7)
P(t) ='{F(1),T € [0,t]} (1) has a non-trivial solutioii, N), q # 0.

For any history oF, we assume th& admits at any time  In our case we restrict the search of a non-trivial solution

t a right derivative® with respect td: to the case where the tengokis closed td=0. This leads

. . to a continuous bifurcation mode in the sense of Rice [8].
P(t+ot) — P(t)

P=limg_o (2)  So, assuming th@ is differentiable aF?, eq. (7) yields
ot after linearization:
We assume also that, a historyfefill time t being given, -
the right time derivativé® depends only on the right time Bkt (FO) NNy =0 8)
derivativeF of F: _ . )

P=0(F) (3) where By (ﬁ) = %%_ﬁ It is clear that a non-
where the functio® is generally non-linear with respect trivial solution exists onlly if the so-calleacoustic tensor
to its argument. Q defined byQix = Bijk.NLN; is singular, that is only if:
In the following, we limit the study to the case when the

det Q=0 9)

history of F is given byF = | + aG° with G° being a

fixed tensor andx being the loading parameter which . . . .

plays a role oft and | runs monotonously from 0 to 1. ;Oitlh'i Z{a(;t‘;cuwlgrh‘:;\?ecizzr?(t)r?ﬁitl(ijse::?)i:t;et ::3 23/5;; by
In. this case we getP = :(or);and by differentiating to GY, and the functior®(G°) can be approximated by
with respect toa, we get thatF = G° along the path. Eq.(4).

According to the definition of the functio® we can  ag g the derivation 0B, it can be numerically approxi-
write the approximate formula [5], [6]: mated by this finite difference:

=(a+Aa) — =(a)
9(G%) ~ (4) O3 (G0 + £AKL) — g5(GP
Aa BigkL = a( : ) =&(©) (10)
M acroscopic loss of stability - Acoustic whereAKL is a second-order tensor such as all its com-
tensor ponents are equal to O excdt which are equal to 1.

Finally, in Fig. 2 we have calculated the stress at the

The loss of unigueness for the rate of boundar valuéaomtéma (in the same linear direction as point n) and
; d e y stresses in points with perturbatiog®k-. Than we have
problems is analysed through Rice’s approach [8]. Fol-

. : ) R calculated the matrix tangent by [5], [6]:
lowing this analysis we look for a rate gradi¢ntvhich

is disco_ntinuous along the b(_)unda_ry of a Iocaliza}tion Py(a™l+ 5fAa +eAt) — By(a™!+ 5fAa)

band. It is known that such a discontinuity can be writtenBigkL = 5F eAKL

as [8]: L (11)
Fi =F3 + N (5) wheredfAa is a small variation step in the main direc-

_ _ - tion, eAX" is a small perturbation in the directidab.
whereN is the normal |(N|| = 1) to the interfaceF! is

the rate gradient on the same side as N of the interface
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FIGURE 2. Schematic representation of the computation of FIGURE 4. Mean stress and standard deviation for WLC
the tangent matrix samples
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FIGURE 3. Mean stress and standard deviation for PLC FIGURE 5. Influence of the size of sample on macroscopic
samples stability (to be more clear diagrams are moved up on y-axis).

RESULTS ence still small. On the other hand the standard deviation
is decreasing with increase of sample size and over 3025
The normal stiffness of contact in the DEM is such thatgrains it is constant (figures 3 and 4).
the stiffness parameter [#] = kn/0dp = 1000, wheregg Next, we performed tests for checking the stability in
is an isotropic stress applied to the grain assemblies. Thihe macro level (biaxial test with and without volume
value of the tangential stiffness is equal to the normalchanging, uniaxial and shearing) [8]. They were done for
stiffnessk; = kn. Friction for the tangential contact law samples with 400, 1024, 3025 and 4900 grains.
is taken asy = 0.5. All tests were done with similar The influence of the sample size for shearing test
Inertial number 1= & /<Tm> [7], where¢ is the strain  for Piola-Kirchhoff stressPK;» is presented on figure
0 5. Stars symbols represent instability points, that cor-

rate, < m > is the mean mass of grains. For all tést : .
103 -3 far ) respond to theletQ< 0, whereQ is the acoustic ten-
was set betweend- 10" to 2.1-10"* for iterations, and sor. This test was made farf = 0.1 and perturbation

.10°5 103 iati
O g2~ 2:10 . O can observethat e size of sam.
400 to 9801) in samples and different bour?dar Condi_ple the is increasing we obtain more important stability
tions P y zones. We have also done tests to check the influence of

T L . . . the size of the small variation steff Aa and the small

Thefirst test was made fottaaxial configuration with perturbationse AL, Values for the small variation step

no volumedtric changes;, = &+ &y = 0. We have im- of were between 0.05 to 1 and for perturbations from

plemented a strain-controlled loading to get the overallz. 10-5 to 2.10-2. In this case we have obtained more

- 02 0 __ e
stress response. The final straireis- [ 0 ,o_z} (nega-  stability zones for smaller values of small variation step

tive values for compression). We have performed 10 test® fAa and for smaller values of perturbations value.

for each size of sample and we have calculated mean It is important to link macro-instability points with
values for stress and its standard deviations. Results afvents representing their cause/origin at the micro level.
the stress-strain diagram for different size of the sample3o do this we are using th&uctuation of the grain
are presented for PLC on figure 3 and for WLC on fig- Zslmn = (MM — M) — Aer™, wherer™ " are the positions
ure 4. The y-axis is &/p, whereq = (0yy — 0xx)/2 and  of the graini in stepsm and n, respectively, and\e

p= (gyy+ 0xx)/2. We can observe that mean stress ratiois the increment of shear strain from stepto n. &mn

g/p is increasing when the number of grains is decreasis a displacement, that measures the shift of the grain
ing, either for PLC and WLC. Nevertheless, this differ- with respect to its position as defined by the macroscopic
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FIGURE 6. Fluctuation of grains for step and perturba-
tions (crosses correspond with the instability points)

One can see that at an instability point we get some
relaxation’ zone. We have observed that, in instability
points, between small variation step and perturbations
step we loose (or we get more) contacts between grains
(or the normal forces are really small) . For stability we
have almost no different of the number of contacts (one
or two grains) while for instabilities this value is even 10
for all directions of perturbation.

CONCLUSIONS

) ) We can observe that boundary condition has some influ-
strain Next we compute the mean value of fluctuation forence on mean stress and standard deviation, but this in-

all grains in the cell for one iteratiom\€ is constant):
(8) = £ N, 1/6™2 whereN is the number of grains.

fluence is relatively small. For the mean stresses for PLC,
the sample size does not play an important role, but for

stability zones it has huge influence. It is very important
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FIGURE 7. Maps of fluctuations for variation step for stabil- 3.
ity (top) and instability (bottom) points 4

In figure 6 we can observe differences between mean
value of fluctuation for all four perturbations and fluc-
tuation of the small variation stepfAa = 0.1 and 5.
instability zones in the sample with 3025 grains. One
can observe that we have instability zones when the
difference between fluctuations is big. If the differenceg.
is small normally we have stability.

7.

In the figure 7 we have presented maps of fluctuations
for shearing for small variation stepfAa = 0.1 for
sample with 3025 grains. On the top we have fluctuations
map for stability point and on the bottom for instability g
(for €120 = 0.102 andé&yp = 0.108, respectively). The
plotted idem is multiplied by 400 to make the diagram
more clear.

for stability zone, to make the correct choice for the size
of the sample (not too small). It is also very important
to choose the correct small variation si@p and small
perturbatioreAK-.

In the micro level we can observe a behaviour dependent
on this coefficients, allowing us to identify the origin of
instabilities in the macroscopic response. Some grains in
instability regime loose their contact during small vari-
ation steps and perturbations. It is very important to re-
duce the number of those grains in every step (changing
the numerical parameters). After resolving this problem,
it is possible to connect the macro-micro codes and per-
form calculations for more complicated samples.
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