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Abstract

We performed series of numerical vertical compression tests on assemblies of 2D granular material using a
Discrete Element code and studied the results in regard to the grain shape. The samples consist of 5000
grains made either of 3 overlapping discs (clump - grain with concavities) or of six-edged polygons (convex
grain). These two types of grains have a similar external envelope, ruled with a geometrical parameter α.
In the paper the applied numerical procedure is briefly described followed by the description of the granular
model used. Observations and mechanical analysis of dense and loose granular assemblies under isotropic
loading are made. The mechanical response of our numerical granular samples is studied in the framework of
the classical vertical compression test with constant lateral stress (biaxial test). The macroscopic responses
of dense and loose samples with various grain shapes comparison show that the shear resistance of a sample
made of clumps increase with the grains concavity. Dense samples made of polygons are less dependant on
the particle shape. This observation is not valid for loose samples made of polygons. The micromechanical
origins of these results are explored by contact analysis, focusing especially on dense samples made of
clumps: grain concavity furthers particles imbrications and increase shear resistance. Finally we present
some remarks concerning the kinematics of the deformed samples. Whereas polygon samples submitted to a
vertical compression present large damage zones (whatever polygons shape), dense samples made of clumps
always exhibit thin reflecting shear zones caused by clump imbrications only, even if our granular model is
cohesionless.
This work was done as a part of CEGEO research project1
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1. Introduction

A typical numerical approach to discrete element modelling of granular materials is to use simple forms of
particles (discs in 2D [1] or spheres in 3D [2]). Although the computation time is short that way, these models
are not able to reflect some of the more complex aspects of real granular media behaviour, such as high
shear resistance or high volumetric changes [3]. In order to model it properly either numerical parameters
(intergranular rolling resistance [4, 5, 6]) or other grain shapes (aggregate of spheres [7] or polyhedral grains
[8]) have to be used. The influence of grain shape is not fully understood yet. In this paper we wanted to
present our investigations concerning the influence of grain shape on the mechanical behaviour of granular
assemblies, grain concavity in particular. We compared two groups of grains - convex irregular polygons
and non-convex clumps made of three overlapping discs.

1www.granulo-science.org/CEGEO
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Figure 1: Particle shape definition: α = ∆R/R1 and examples of particle shapes used for clumps and for polygons

2. Granular Model

The granular model used consists of 5000 polydisperse 2D frictional particles. Two kind of grain shapes
are used: convex irregular polygons of six edges and non-convex particles made of aggregate of three over-
lapping discs named clump. These two shapes were chosen because of the similarity of their global contour
(polygonal grains can be seen as a polygonal envelope of clumps made of three discs). As shown in figure
1, particles shapes are defined by a parameter α = ∆R

R1

where R1 denotes the particle excircle radius and
∆R is the difference between the ex- and the incircle radii. The incircle has to be contained in the particle
fully. For non-convex clumps α ranges from 0 (circle) to 0.5. For convex polygonal grains α ranges from

1−
√

3

2
≃ 0.13 (regular hexagons) to 0.5 (equilateral triangles). Some of the shapes used are presented in the

table in Fig. 1. For each chosen α, granular samples are made of polydisperse particles. The polydispersity
of grains is driven by the radii of the grain excircle. In each sample, the chosen radii R1 are such that the
areas of the excircle are uniformly distributed between Sm = πR2

m and SM = π(RM )2 = π(3Rm)2.

3. Discrete Element Method

Two-dimensional numerical simulations were carried out using a discrete element method [9] within the
framework of Molecular Dynamics (MD) principles [10]. Grains interact in their contact points with a linear
elastic law and a Coulomb friction. The normal contact force fn is related to the normal interpenetration
(or overlap) h of the contact as

fn = kn · h , (1)

fn vanishes if contact disappears, i.e. h = 0. The tangential component ft of the contact force is proportional
to the tangential elastic relative displacement, with a stiffness coefficient kt. The Coulomb condition |ft| ≤
µfn requires an incremental evaluation of ft in every time step, which leads to some amount of slip each
time one of the equalities ft = ±µfn is imposed (µ correspond to the contact friction coefficient). A normal
viscous component opposing the relative normal motion of any pair of grains in contact is also added to the
elastic force fn. Such term is often introduced to ease the approach of mechanical equilibrium. In case of
frictional assemblies under quasistatic loading, the influence of this viscous force (which is proportional to
the normal relative velocity using a damping coefficient gn) is not significant [11] (elastic energy is mainly
dissipated by Coulomb friction). Finally, the motion of grains is calculated by solving Newton’s equations
using a third-order predictor-corrector discretisation scheme [12].

Principles of discs contact detection are well known [13], and contact detection for clumps was solved as
for discs: a contact occurs in a point, the normal force value fn is computed with eq. (1) and its direction
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Figure 2: Contact types for clumps and polygons: corner-to-edge (A) and edge-to-edge (B). This figure also show that for a
contact between two polygon edges, two contact points are considered. Only one is considered if there is a contact between an
edge and a corner

connects the centres of discs in contact, Fig. 2. Contact detection and contact forces calculations between
polygons do not use classical methods based on the area overlap between polygons [14, 15, 16, 17]. Instead
they use the shadow overlap technique proposed by J.-J. Moreau [18] which was originally applied within the
Contact Dynamic approach [19] for convex polygonal particles. In our study, this technique is adapted to the
MD approach. Three geometrical contacts can exist between polygons: corner-to-corner, edge-to-corner and
edge-to-edge contact. Corner-to-corner contacts are geometrically (or mathematically) realistic but never
occur in our simulations because of numerical round errors. When dealing with edge-to-edge contact, shadow
overlap involves two contact points and their associated overlap h, figure 2. This is the main difference with
the classical method (area overlap calculations) where only one contact is considered between edges.

Finally, one may be interested in the main contact law parameters: the normal and tangential stiffness:
kn and kt, and the friction coefficient µ. Assuming that samples would be loaded with a 2D isotropic
stress σ0 = 10 kN/m, the normal stiffness of contact kn was computed according to the dimensionless 2D
stiffness parameter κ = kn/σ0 [20, 11, 21], which express the mean level of contact deformation (1/κ). κ
was arbitrarily set to 1000. As a comparison, a sample made of glass beams under an isotropic loading of
100 kPa reach κ = 3000. The tangential stiffness kt can be expressed as a fraction of the normal stiffness,
k̃ = kt/kn, k̃ > 0. In discrete element literature k̃ is often equal one. k̃ > 1 can presents specific behaviour
where Poisson coefficient of grain assemblies become negative, [22, 23, 24, 25]. Running several numerical
simulations with various k̃, 0 < k̃ ≤ 1, [20] have shown that if 0.5 ≤ k̃ ≤ 1, the macroscopic behaviour
remains similar. Thus we arbitrarily fixed k̃ to 1.

4. Sample Preparation - Isotropic Compression

Granular samples of 5000 grains are prepared in three steps: preparations start with a random spatial
distribution of the particles inside a square made of four rigid walls. Next the particles slowly grows until
σ0 = 0.5 kN/m is reached. Finally, samples are isotropically loaded by wall movement up to σ0 = 10 kN/m.
Fragments of two samples1 C.30 and P.30 (clumps and polygons with α = 0.3) are displayed in figure 3.

In presence of rigid boundary conditions like walls this second step of the preparation is the only way
to ensure a good homogeneity of the contacts-forces network and the contact density. This was successfully
checked in every sample and furthermore we systematically observed that contact orientations (fabric tensor)
were isotropically distributed in every directions of the plane. To obtain samples with different compacities
one may use various values of the intergranular friction coefficient µ, [26]. During the preparation phase
with µ fixed to zero, samples isotropically loaded up to σ0 = 10 kN/m are dense and the compacity is

1Samples will be denoted C.xx or P.xx respectively for C lumps and Polygons, where .xx correspond to the decimal part of
the shape number α
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Figure 3: Fragments of two samples submitted to an isotropic loading σ0 = 10 kN/m. Sample P.30 on the left and C.30 on
the right. shape parameter α = 0.3
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Figure 4: Compacity ξ versus α of samples under isotropic loading. Error bars correspond to standard deviation computed
over a population of four samples. Round and square symbols represent samples made of clumps and of polygons respectively.
Black and white symbols represent dense and loose sample respectively

maximal. When instead a positive value of µ is used, samples became looser and compacity decrease. In
our study dense samples were prepared with µ = 0 and the loose ones with µ equal 0.5. 16 different samples
(4 denses, 4 looses made of clumps and 4 denses, 4 looses made of polygons) for each α value were prepared2.
Figure 4 show that samples made of polygons P.xx are as dense as C.xx samples when the friction coefficient
used during the isotropic compression is null. When samples are looser, µ = 0.5, P.xx samples show bigger
compacity than C.xx samples: intergranular friction seems to prevent clumps imbrication and thus generate
more voids in samples than polygons for which grains envelope is convex.

For both clumps and polygons, contact between particles can occur in more that one contact point.
For clumps there are four contact possibilities: single contact Fig.2(i), double contact involving three discs
Fig.2(ii), triple contact Fig.2(iii) and a double contact involving four discs Fig.2(iv). By analogy with
polygon contacts (edge-to-edge or corner-to-edge, Fig.2) all these contacts between clumps can be merged in
two groups, (A) and (B). Other groups may also be defined, for example simple contacts which correspond
to single contacts (Fig.2(i)) for clumps and polygons - group (A’); complex contacts which correspond to
contact (ii)+(iii)+(iv) for clumps and double contact for polygons - group (B’). One can imagine that α can
have a large influence on the proportion of contact types.

We studied the coordination number z∗ corresponding to the mean number of contacts per grain. Here
only grains that support two or more compression forces, and therefore take part in load transfer, were
considered. For samples made of frictionless perfectly rigid discs, z∗ is equal exactly 4 [27]. Because κ is not

2All analysis will be done on mean results computed over 4 samples of each shape and each α. Associated Standard
Deviations will always be given, even if they are to small to be significant.
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Figure 5: Coordination number z∗ values vs. α under an isotropic loading. Round and square symbols represent samples made
of clumps and of polygons respectively. Black and white symbols represent dense and loose sample respectively

infinite in our study, z∗ = 4.093 ± 0.005 is greater in our samples made of circular particles (discs, α = 0),
but still very close to the reference value. z∗ is evaluated for clumps and polygons, both dense and loose
samples. The dependence of z∗ along α is shown in figure 5. It is typical to observe high value of z∗ for
samples prepared without friction, as the ones presented. Dense samples made of frictionless clumps show
constant values of z∗ for all the shapes. Dense samples made of polygons show similar tendency. This can
be probably explained by the grain envelope similarity of the two groups and because we used a double
contact technique at every polygon edge-to-edge contact. What is more, z∗ increase linearly with α when
samples are prepared with positive friction coefficient µ = 0.5.

5. Macro-mechanical Response of Granular Assembly Loaded in Vertical Compression Test

The samples were tested in a 2D strain controlled vertical compression test. The vertical stress σ1 was
increasing while lateral σ3 remained constant. The loading velocities were chosen according to the inertial

number I = ε̇1

√

〈m〉
σ3

[21] where ε̇1 denotes the strain rate and 〈m〉 is the typical mass of a grain. I value

was set to 5 · 10−5. It describe the level of dynamic effects in the sample. For quasi-static states value of I
should be low. The mechanical responses of the samples are plotted on η vs. ε1 charts and shown in figure
6. η = t/s, t = (σ1 − σ3)/2 is the half of the deviator stress and s = (σ1 + σ3)/2 is the mean stress.

For dense samples C.xx made of clumps, one can observe in figure 6(a) that the macroscopic shear
resistance increase with α. The η-ε1 curve for discs is also shown in figure 6(a). Although C.10 implies
grains with a small α, the mechanical response of that sample exhibit remarkable increase of the maximum
deviator in comparison to discs samples C.00. Extracted from η-ε1 curves, friction angles at the peak φp

and at the threshold φt are shown in the figure 7(a). For loose clump samples there is no peak value of the
friction angle, φp = φt, figure 6(c). Thus, for all C.xx samples, the trend is: both peak φp and threshold φt

friction angle values increase along with α. φt increase proportionally while φp of dense samples increase is
nonlinear and seems to be asymptotic for larger α ≥ 0.4.

For dense P.xx samples, the analysis of η-ε1 curves presented in Fig. 6(b), show that φp values slightly
decrease linearly along with α, while φt values increases, Fig. 7(a). For loose P.xx, depending on α, one can
notice macroscopic curves characteristic to loose samples but dense as well , Fig. 6(d). Then, the tendency
is more complex: when α ≤ 0.3, every sample present different values of φp and φt. On the contrary, there
is no peak when α > 0.3 and φp = φt. This kind of the behaviour can be correlated probably to the initial
compacity of the samples shown in figure 4 and where one can observe that ξ values are close for dense and
loose P.xx samples when α ≤ 0.3. If we focus only on φt for loose P.xx, we observe an increase of the friction
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Figure 6: Macroscopic η − ε1 curves for some of the samples

angle with α, except for samples made of triangles, α = 0.5, which always behave specifically3.
To sum up the observations made on threshold friction angles for clumps and polygons with constant

µ, adding some particles irregularity by increasing α always lead to an increase of the macroscopic angle
of friction in the critical state. This influence of the grain geometry is in agreement with a previous study
of Salot et al. [7]. Lastly, as one can see in figure 6, there isn’t any obvious influence of α on the Young’s
modulus. E is linked to the rigidity matrix and therefore to z∗ [28], which is constant for dense samples
(Fig.5).

In figure 8, volumetric changes of some samples are shown. For both dense clump and polygons samples,
Fig. 8(a) and 8(b), the volume4 increase mainly during the vertical compression, after a small contraction
due to the stiffness of the contacts [11]. The volumic increase for dense C.xx samples is quite similar from
one chosen α to another. On the other hand, α clearly influence the volumetric change of dense P.xx samples
but this influence seems erratic. Nevertheless, dense P.xx samples show bigger total dilatancy than dense
C.xx samples. Loose C.xx sample behave like loose sands and are contractant during the whole compression
tests. It is more complex for loose polygon samples: as said previously about η-ε1 curves, loose P.xx samples
behave like loose granular materials when α ≥ 0.4, and as a consequence, samples are then contractant.
When α < 0.4, samples always increase their volume.

There is no particular influence of particle concavity on average dilatancy angle ψ values (sinψ = dε1+dε3

dε1−dε3

)

3Notice that triangle is the only shape with 3 edges.
4Which is in fact an area in 2D but here called volume.
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Figure 7: (a) - Friction angles vs α for clumps and polygons samples. The two upper curves correspond to friction angle at the
peak φp of dense samples. The four other curves show friction angles at the threshold φt, either for dense and loose samples.
(b) - Dilatancy angles for all the samples; Values of the angles for dense samples were computed at the peak, between [1,5 -
2,5%]ε1; For loose ones the range was [6-7%]ε1. On both figures, circular and square symbols refer respectively to samples
made of clumps and polygons. Black symbols indicate dense samples and loose samples with white ones
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Figure 8: Volumetric changes (computed in 2D it correspond to the area) during vertical compression for loose and dense
samples made of clumps and of polygons. Positive −εv implies an increase of the sample volume
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Figure 9: Corner-to-edge contacts ((B) contact, see Fig. 2) percentage at the end of the vertical compressions. Comparison
between clumps and polygons

of clump samples, both dense and loose (Fig.7(b)). On the other hand, ψ is lower for polygons with higher
values of α than for the ones more similar to hexagons.

6. Micromechanical Analysis

6.1. Contact Proportion Evolution

A way to investigate and to try to explain the grain shape influence on the mechanical behaviour discussed
in the previous section, is to focus on the particle scale. In order to do that, one can investigate the
intergranular contact proportions at three stages of biaxial test: in the isotropic state, at the peak and in
the critical phase.

Focusing on the critical phase firstly (end of the biaxial test), contacts observations based on the division
to two contact groups edge-to-edge (A) and corner-to-edge (B) (Fig.2) can be made. The evolution of (B)
contacts in function of α is shown in figure 9. (A) can be easily deduced by subtracting (B) percentage from
100. On one hand, the percentage of (B) contacts does not depend on the initial compacity of the sample,
dense and loose samples present similar trend. One the other, (B) percentage for C.xx samples decrease
linearly with α. Opposite tendency is observed for P.xx samples. For α = 0.5 clump and polygon shapes
converge and this is probably the reason why (B) percentages are close.

Generally speaking the majority of contacts is single and it increase along ε1. That is why the percentage
of (B) contacts is higher than (A). Because dense samples were prepared with no friction, compacity of
each assembly of grains submitted to an isotropic loading is always maximum. As a consequence, even if
samples are able to exhibit small contractancy (related to dimensionless contact stiffness κ), total number
of contacts in each sample during a vertical compression systematically decrease. Therefore in order to
be able to compare different contact type proportions we propose to balance the decrease in total contact
number using a coefficient ω∗ = N∗

εb
/N∗

εa
, where N∗

εa
and N∗

εb
represent the total number of all neighbouring

contacts5 at a given stages (εa or εb) in the sample. We propose here to focus on the evolution of two contact
groups for clumps, previously defined in section 4:

• (A’) single contact between grains, called simple contact,

• (B’) multiple contacts between grains, called hereafter complex contacts.

5When two grains are in contact via 1, 2 or 3 contacts points, only one contact is counted.
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Figure 10: Transformation of complex clump contacts to simple, quantified by λ and evaluated between the maximum stress
deviator (peak) and the isotropic initial state for figure (a), and between the peak and the critical state, Fig. (b)

We observed the evolution of clump contact number of each group between two successive stages and
normalised that evolution with ω∗. Thus we define a new variable λ = ω∗ · Nεa/Nεb , where Nεa and
Nεb denotes the number of (A’) or (B’) contacts between two different stages εa and εb of the vertical
compression. In figure 10(a), we can observe that for α = 0.1, λ is smaller than 1 for complex (B’) contacts
and greater than 1 for simple (A’). These were computed between εa: isotropic state and εb: maximum
stress deviator (peak). This can be analysed as a transformation of complex contacts into simple between
these two stages. When all complex contacts transform into simple, graphical points are in equal distance
from 1, 1−λ(B’) = λ(A’) − 1. If 1−λ(B’) > λ(A’) − 1, it means that some complex contacts transform in

simple but some disappear as well. When α goes to 0.5 these transformations are still active but with less
intensity. Geometrical imbrications between clumps increase with α and are ”more difficult to lose” during
biaxial test. λ seems to reach a threshold when α ≥ 0.4, Fig. 10(a). This last observation may be correlated
to the evolution of φp which also reach a threshold for the same value of α, Fig. 7(a).

Focusing on λ between the peak and the critical state, Fig. 10(b), we can observe that the increase of
simple contacts is small for every α (λ(A’) − 1 ≃ 0) and complex contact are mainly lost 1 − λ(B’) > 0,

especially when α is small. Greater is α, smaller is the amount of lost complex contacts (grains imbrication
are destroyed less). This may explain that φt of clumps increase with α, Fig. 7(a).

6.2. Contact Orientation Evolution

Contact orientations and their evolutions during the vertical compression tests are classically analysed.
Usually one can observe that contacts are lost in the extension direction and gained in the direction of
compression, [29]. In figure 11 we present statistical analysis of contact orientations between different stages
for two values of α, by evaluation of P (θ) = Nεb

(θ)/Nεa
(θ), where εa and εb correspond to two successive

stages, Nεx
(θ) is the number of contacts in the direction θ for the stage εx; P (θi) = 1 express that the

number of contact in the direction θi remain constant between the two studied stages; if P (θi) < 1, contacts
are lost and if P (θi) > 1 contacts are gained in θi direction. When we focus on the evolution of contact
numbers between the isotropic state and the peak, Fig. 11(a) for α = 0.2 and Fig. 11(c) for α = 0.5, we can
observe that there is no contact gain in any direction. P (θ) ≃ 1 in the compression direction and P (θ) < 1
indicate that most of the contacts are lost in the extension direction. Computed of θ, the mean of P is
smaller than 1 for both α and we have checked that it is almost constant for all studies α. This simply
indicate that contacts are mainly lost during the vertical compression of dense samples made of clumps.
Finally, we noticed that greater α is, bigger is the imbrication between grains and smaller is the amount of
contacts lost in the extension direction.
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(a) α = 0.2

(b) α = 0.2

(c) α = 0.5 (d) α = 0.5

Figure 11: P (θ) computed between different stages, over 25 classes of 7.2◦. Statistics computed over approximatively 40000
contacts for the isotropic state, 30000 contacts at the peak and 29000 at the critical state. The circle radius drawn in dash line
is 1. (a) and (c): Isotropic state to the peak. (b) and (d): Peak to the critical state

Analysing contacts reorientation between the peak and the critical state, Fig. 11(b) and 11(d), exhibit
opposite tendency because contacts are mostly lost in the compression direction and gained in the extension
direction when α is small, Fig. 11(b). When α is bigger, contacts are lost in every direction, Fig. 11(d).

We proposed now the same contact orientation analysis but for (A)′ and (B′) contact groups (simple
and complex contacts). Statistical analysis of the evolution of contact orientation from the isotropic state
to the peak for (A)′ and (B)′ groups is shown in figure 12. On one hand, Fig. 12(a) and 12(b) show that
(A’) contacts are gained (α = 0.2) or are kept (α = 0.5) in the compression direction; Simple contacts are
mainly lost in the extention direction, especially when α is small. On the other hand, we can observe that
(B’) are lost in every directions with some variations depending on θ. Nevertheless, complex contact are
more persistent when α is greater (the mean of P is bigger for α = 0.5 because of grain imbrications).

The statistical analysis of the evolution of contact orientations between the peak and the critical state,
Fig 13, confirm the tendency seen in figures 11(b) and 11(d): when α is small, simple and complex contacts
are lost in the compression direction, especially for (B’) contact group. One can also notice that the mean of
P is equal to 1 for figure Fig 13(a), α = 0.2, and lower than 1 in figure 13(c), the number of simple contacts
remains constant during the mechanical test from the peak to the critical state. When α = 0.5, the number
of simple contacts decreases, the mean of P is 0.9. (B’) contacts are those which are mainly lost. All these
observations can be correlated to figure 10, where the different roles of simple and complex contacts were
already pointed out.

Loosing and gaining contacts respectively in the compression and the extension direction is not a classical
result, even between the peak and the critical state, [29]. This should be analysed as a pathology of dense
samples prepared without intergranular friction.

6.3. Shape Influence on Local Strain Analysis

We focused on the strain localisation in the samples in order to study the macroscopic rupture and
its origins. Two approaches were used for that: local strain maps and shear localisation indicator S2 [30].
Comparing particle kinematics in the isotropic state εa and in a deformed stage εb we computed local strains
over Delauney triangulation like in [29]. Using the second strain invariant we illustrate the shear localisation
in figure 14. The shear maps show that polygon samples create wide shearbands that develop slowly during
the test. Clump behaviour is different, the localisation zones are more narrow and appear rapidly. This
complies with the previous remarks about the overall dilatancy of the samples, see section 5 and Fig. 8.

Shear localisation indicator is defined as
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(a) α = 0.2, (A’) contacts (b) α = 0.5, (A’) contacts (c) α = 0.2, (B’) contacts (d) α = 0.5, (B’) contacts

Figure 12: P (θ) computed between the isotropic state and the peak, over 25 classes of 7.2◦. The circle radius drawn in dash
line is 1

(a) α = 0.2, (A’) contacts

(b) α = 0.5, (A’) contacts (c) α = 0.2, (B’) contacts
(d) α = 0.5, (B’) contacts

Figure 13: P (θ) computed between the peak and the critical state, over 25 classes of 7.2◦. The circle radius drawn in dash line
is 1

(a) Clumps (b) Polygons

Figure 14: Shearmaps on samples made of grains with α = 0.3. ε1 = 0 − 13.5%
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Figure 15: Shear indicator evolution during a vertical compression

S2 =
1

Nt

(

Nt
∑

i=1

I2ε

)2

Nt
∑

i=1

I2
2ε

(2)

where I2ε is the second invariant of the strain tensor and Nt is the total number of triangles. In a sense,
value of S2 can be regarded as a percentage of a distorted sample area.

Figure 15 give the evolution of S2 for several dense and loose samples made of clumps and polygons.
Close to the isotropic state both groups behave similarly and the maximum value of S2 is reached at about
2% of ε1. At this stage at least half of the sample is distorted, 0.5 < S2 < 0.6. Later S2 decrease, which
indicates that I2ε localise in a focused zone. In figure 15, on can observe that the dense clumps sample
with α = 0.5 present a large decrease of S2 and quickly reach a threshold value S2 = 0.3 corresponding to
a sheared area of 30%. On contrary, the evolutions of S2 for the dense polygons sample with α = 0.24 and
the loose polygons sample with α = 0.28 indicate that the localisations of sheared zones is more progressive
along ε1. For ε1 = 0.15, these samples produced shear bands on 40% of their area. For the two loose samples
for which S2 evolutions are shown on figure 15, C.30 and P.40 samples, we observe an expanding sheared
area up to ε1 = 0.8. In these cases, we have check on shear maps that sheared zones, which correspond to
more than 60% of the total area of the samples, are spread.

Analysing all our numerical simulations, in dense samples sheared zones are thinner for C.xx than for
P.xx and appear earlier during a test. Dense samples made of polygons kinematically behave mostly like
dense sands and clump samples like brittle material. The threshold values of S2 are 10 − 20% higher for
dense polygon samples than for dense clumps of the same α. What is more, the shape of S2 curves is closely
correlated with the shape of stress-strain curves. Positions and widths of the peaks overlap.

7. Conclusions

The aim of that article was to present our work in progress about the mechanical influences of particles
shapes in granular assemblies in the framework of numerical simulations perfomed by Discrete Element
Method. First, a grain geometry parameter α was defined. For particles called clumps and made of 3
overlapping discs, α is a measure of the grain concavity. 6-edged convex polygonal grains were also ruled by
α. The overall envelope depending on α for each type of particles used in the studied granular model was
the common feature. Our numerical simulations were perfomed by discrete element method adapted to each
type of grain shapes. For particles made of discs (clumps), the commercial code PFC2D of ITASCA by was
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used. For polygonal particles, we developed our own computer code which implement some special contact
detection between objects in the framework of Molecular Dynamic approach. In this paper we highlighted
that changing grain geometry influence granular assembly mechanical behaviour under the classical vertical
compression test, also called biaxial test in 2D. More complex grain shapes allow reaching higher levels
of internal friction angle and large volumetric strains comparing to discs. Some clear differences in the
behaviour of polygons (convex) and clump (non-convex) assemblies were shown. One should notice also
that the chosen shapes of particles demonstrate similarities as well, caused by the global envelope, that
justify the comparison. Granular assemblies generation and compaction was presented. By the use of two
extremes values of the intergranular friction angle µ, dense and loose samples were prepared, both for samples
made of clumps and polygons.

First, focusing on the macroscopic mechanical behaviour of our granular model we show that loose sam-
ples composed of polygons with low values of α present behaviour typical to consolided soils where the
initial contractance stage was not only due to contact stiffness but also to large intergranular reorganisa-
tions. Apart from that, loose and dense samples of all shapes behave as expected (loose samples only show
contractant behaviour while dense ones mostly exhibit large dilatancy), showing similar behaviour when
discussing friction residual angle φt or percentage of contacts. All samples show higher values of maximum
internal friction angle φp and φt than samples only made of circular grains (each particle is a disc). The
correlations between shape parameter α and friction angles are different for clumps and polygons. On one
hand, for dense clump samples, φp increase with α and seems to reach a assymptotic value φp = 40◦. On
the other hand, φp linearly decrease when α goes from 0.13 to 0.5. On that occasion, the particular case of
triangular shape (α = 0.5) is also discussed briefly. Overall dilatancy of clump samples is bigger than the
one of disc assemblies, but spectacularly smaller than dilatancy of polygons.

Secondly, at the granular scale, we proposed to correlate macroscopic observations by the meaning of
contact evolution analysis which lead us to introduce two groups of contacts between particles: single and
multiple, called simple and complex in that paper. Thus, we observed that complex contacts between
clumps transform to simple and that this process depends on the size of concavities, i.e. α. We tend to
link it with an increase of shear resistance in the case of dense granular samples made of clumps. Focusing
on granular assemblies failures, we study shear bands localisation and tried to characterise it by a scalar.
It was observed that reflecting shear band were thinner in dense samples made of clumps than ones made
of polygons, whatever α, highlighting evident geometrical imbrications of clumps that way. In a sense,
polygons samples behave more like soil, they slowly create wide shearbands, while clump samples resemble
brittle material more.
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