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ABSTRACT: We study the macroscopic behavior of granular materialasatered as a con-
sequence of the interactions of individual grains at thermgrale. For this, a computational
homogenization approach is considered. At the small-deakd, we consider a granular struc-
ture modeled by Discrete Element Method (DEM). Grain intéons are modeled by normal
and tangential contact laws with friction (Coulumb’s criten). At the macroscopic level, a nu-
merical solution is constructed by the Finite Element MdtlieEM). The upscaling technique
consists in using the response of the DEM model at each Ganiissqs the FEM discretisation
to derive numerically the constitutive response. In thiscess, a tangent operator is generated
together with the stress increment corresponding to tharsincrement in the Gauss point. In
order to get more insight on the consistency of the resuttorggstitutive response, we compute the
determinant of the acoustic tensor associated with thegahgperator. This quantity is known to
be an indicator of a possible loss of uniqueness locallyhathacro scale, by strain localization
in shear bands. The results of different numerical testpaeeented. Periodic boundary condi-
tions have been compared with the ordinary wall conditiangtie Representative Elementary
Volume.

1 INTRODUCTION

The presented study considers a two-scale numerical sclogrtiee description of the behavior
of granular materials. At the small-scale level, we consttat the granular structure consists
of 2D round rigid grains, modeled by the discrete elementwoe{DEM). At the macroscopic
level, we consider a numerical solution obtained with theteiElement Method (FEM).

The link between scales is that of the computational homiagéan, in which average REV
stress response of the granular microstructure is obtamedch macroscopic Gauss point of
the FEM mesh as the result of the macroscopic deformatidoriigmposed to the REV. We
also compute the tangent stiffness matrix, at the Gausg,@d the acoustic tensor, which is
an indicator of possible unstable behaviors. The influefdéferent parameters on the stability
of the macroscopic response is presented through theseguitimerical tests.

2 MACRO LINK

2.1 Macroscopic constitutive law

For a given history of the deformation gradient, we comph#edlobal stress response of the

REV. The macroscopic stress results from the average farmii= % Zivzcl fE05 1,5 €{x,y},



whereS is the area of the samplgS andif are respectively the componermtf the force acting in
the contact and the componentof the branch vector joining the mass centers of two grains in
contact (Love 1927). Next, we convert the Cauchy stresgi@diola-Kirhoff stress (Bonnet &
Wood 1997). The Piola-Kirchoff stress is depended on thahi®f thegradient of deformation

F (Bilbie et al. 2007), (Bilbie et al. 2008)

P(t) = I'"{F(r),7 € [0,1]} (1)
For any history ofF, we assume th& admits a right time derivative with respect ta:

P(t+d6t) — P(t)

5 (2)

ﬁ = lim5t—>0

We also assume that, for given historyFofill time ¢, the right-sided derivative depends only
on the right time derivative, that is : . .

P=6(F) (3)
where the functio® is generally non-linear with respect to its argumﬁnt

In what follows, we limit our study to the case when the higtof F is given byF = | 4+ aG°
with G° being a fixed tensor and being time-like loading parameter which runs monotonously

from'O to 1. In this case we geﬁ = Z(«) and by differentiating with respect to, we get

that F = G° along the path. According to the definition of the functiénwe can write the
approximate formula (Bilbie et al. 2007), (Bilbie et al. Z)0

Sla+ Aa) — Z(a)
Aa

O(G) ~ (4)

2.2 Macroscopic loss of stability - Acoustic tensor

The loss of uniqueness for the rate-type boundary valuel@mbis analysed through the Rice
approach (Rice 1976). Following this analysis we look far tate of deformation gradieft
which is discontinuous along the boundary of a localizaband. It is known that such a dis-
continuity can be written as (Rice 1976):

FL =F2 +aNy (5)

whereN is the normal [[N|| = 1) to the interfaceF! is taken on the same side HsandF° on
the opposite side. The stress vector has to be continuoossaitre interface :

(5 - PNy =0 (6)

As ?i, andPTf] are linked toﬁ}, and, respectivel —}J by Eg. (3), the unknowg andN have to
satisfy the equation

(@U (ﬁ+q®N) _0,, (ﬁ))mzo %

for givenﬁ.
In the considered macroscopic quasistatic deformatioogs®) the question of loss of ellipticity
therefore reduces to the determination of the valder which Eq. (7) has a non-trivial solution



(a,N),q #0.

In our case we restrict the search of non-trivial solutianghie case in which the tensbt is
closed toF°. This leads to a continuous bifurcation mode in the sensea (Rice 1976).

So, assuming tha® is differentiable aﬁ, Eq. (7) yields, after linearization:
Bijkr <E> @wNLN; =0 (8)

_ 00,

whereB,; .1, <E> e It is clear that a non-trivial solution exists only if the saled

acoustic tenso, defingd B}Qik = B, 1NN, is singular, that is only if:

detQ =0 9)

For this particular process considered here and givel Byl + aG°, we have seen thi is
constant and equal 8° and the functior®(G°) can be approximated by Eq.(4).
As to the derivation 0, it can be numerically approximated by finite differences:

@i](GO + €AkL) — GZJ(GO>
3

BiJkL = (10)
whereA*” is a second-order tensor such that all its components aed &0 except th&L one
which is equal to 1. In Fig. 1) we have represented the stiedgegoint) f Aa (in the same
linear direction as point n) and stresses in points withysbetionss A*~. We also computed the
tangent matrix (Bilbie et al. 2007), (Bilbie et al. 2008) as :

Pij(a™t 4+ 5f Aa+ e AFE) — Pij(a™t +0f Aa)

BiJk’L - 5f EAkL (11)

wheres f Aa is a small variation step in the main directiem\*” is a small perturbation in the
directionkL.
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Fig. 1. Schematic representation of the computation ofahgént matrix



3 MICRO-SCALE MODELING: DEM

The system consist of a set Nfpolydisperse discs, with the random radii homogeneously di
tributed betweerR,,,;,, andR,,,.. = 2.5R,.;,. This system is simulated using a discrete element
method - molecular dynamics with a third-order predictorrector scheme (Allen & Tildesley
1994). All grains interact via a linear elastic law and Coubofriction when they are in contact
(Cundal & Strack 1979). The normal contact forgs related to the normal apparent interpen-
etrationd of the contact ag,, = k,9, wherek,, is a normal stiffness coefficiend ¢ 0 if a contact

is presenty = 0 if there is no contact). The tangential compongntf the contact force is pro-
portional to the tangential elastic relative displacemeiith a tangential stiffness coefficieht.
The Coulomb conditionf;| < uf, requires an incremental evaluation ffin each time step,
which leads to some amount of slip each time one of the etp®&lfit = . f,, is imposed. A
normal viscous component opposing the relative normalanaif any pair of grains in contact
is also added to the elastic for¢gg to obtain a critical damping of the dynamics. We consider
two different boundary condition®eriodic Limit Condition(PLC) andrigid wall (WLC), cf.
Fig.2

Fig. 2. Shape of the PLC sample with normal contact forcdt @ad cell of the sample with rigid walls (right)

The idea of PLC is that every grain is not only in contact wigighbours it the simulated
cell (primary box), but also with some grains in 'image c&lhich are replicated to infinity by
rigid translations in 2D Cartesian directions. This repéicontain the same sets of grains as the
primary cell (Ellero 2004). Finally, if one grain is movingioof primary cell, it appears on the
opposide side of cell - with the same velocity and the same embam.

Both PLC and WLC conditions were implemented. In every step we applied arement of
strain and, after DEM computations, we recover the stresses

We have considered different sizes of the samples (from d&i@gto 9801) and different veloc-
ities of the applied strains and we analyzed their influemcthe behavior of the sample and the
stress response.



4 RESULTS

The normal stiffnes of contact in the DEM is calculated fag #D, where stiffness parameter
(Combe & Roux )x = ’;—” wherek,, is a stiffness an@0 is an isotropic stress applied to the
grain assembly. The value afis taken 1000, that corresponds to quite rigid bodies. Thgeva
of the tangential stiffness is equal to the normal stiffnigss k,,. Friction coefficient is taken
asp = 0.5. We have considered different boundary conditions, dffisizes of the samples
(number of grains), and different velocities of the appk&@ins.

The first example is hiaxial test without volume changes. The final strain matrixs [062 _8_2} ,
where negative sign is for compression. We have performedsi6 for each size of the sample
and we have calculated mean stress and its standard desgidfi® have done it for both types
of boundary condition®LC andWLC. The stress-strain response resulting for different size o
the sample are presented in Fig. 3 and Fig. 44b€ andWLC, respectively. The y-axis is?,

whereq = 222722 andp is a mean value of stregs= % In the diagram Fig.3 and 4 one
can see standard deviations of the sample fo%the
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Fig. 3. Mean stress and standard deviation of PLC samples

We can observe that, for PLC and WLC, mean stress is incrggagien the number of grains
is decreasing, but the difference is small. On the other tiamdtandard deviation is decreasing
with increase of the sample size and over 3025 grains it&béshed (Fig. 3 and 4), but for PLC
samples there is less noise.

A second series of tests was made to check the influence ofetbeity of the applied strain.
It was done by changing the so-calleertial number/ = ¢, /% (Roux & Chevoir 2005),

wheree is a velocity of strain< m > is the mean mass of grains angl is the stress in the
isotropic state. In figure 5 different | (beetwérs - 10~ and2,8 - 10~°) are presented. It was
done for a sample cell with 3025 grains, for the final strairtriea = [%* 2] (test with no
volume changes). One can observe that, for the strainssdiagram, the influence of | is rather
small. This is due to the fact that in the code there is strapuglierium condition.

Next, we performed tests for checking the stability in thecrodevel (biaxial test with and
without volume changes, uniaxial and shearing). They wereedor samples with 400, 1024,
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Fig. 5. Different inertial number | for sample with 3025 grai

3025 and 4900 grains.
The influence of the sample size for shearing test for sthfessk, is presented in Fig. 6 (to
be more clear, the diagrams were moved up on y-axis). Stpresent instability zones, that
correspond to théetQ < 0, where() is the acoustic tensor. This test was madeffoe= 0.1 and
perturbatiore A* = 2. 1076,

One can observe that if the size of sample is increasing wairobtore important stability

zones. All tests were done with similaertial number/ = £, /%. | was set betweeh2-10—3

to 2.1 - 1073 for iterations, and..2 - 10~ to 2.1 - 10~ 4 for the small variation stepfda.

We have also done tests to check the influence of the size aintladl variation step fo«
and the small perturbations\*~. We have done it for shearing test for sample with 3025 grains
First, the perturbation was taken 2s10~°. Values for the small variation stefy were be-
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Fig. 6. Influence of the size of sample on macroscopic stgbili

tween 0.05 to 1 (Fig. 7). Next, the small variation step wasstant and equal to 0.01, but the
perturbation step was betwe2n10=%to 2 - 1073 (Fig. 8).
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Fig. 7. Influence of the variation step on macroscopic stgbil

In this case we have obtained larger stability zones for lemehlues of small variation step
0 foa and for smaller values of perturbation value. But, it is imtpot to take the value @ffda
carefully to be still in elasto-plasticy behaviour (not pelasticity).
One important point is the identification of the microscopiins for the macro instabilities.
To do this we are using the so-callfdctuations of displacement of grai6g™ = (v} — r") —
Aer]”, wherer!”, r' are the position of grainin step m and n, respectively antk is a tensor
of the increment of the strain from step to n. Next we compute the mean value of fluctuation
for all grains in the cell for one iteration¢,,, isn constant){§™") = & SV 167 |12 where
N is the number of grains.
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Fig. 8. Influence of the perturbation value on macroscogibikty
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Fig. 9. Difference of the fluctuation of the grains (crossasaspond with the instability points)

In figure 9 we can observe changing of the fluctuation of théngran the sample with 3025

particles in shearing. The diagram prezents the differdmeatwen the fluctuation of grains in
small variation step and mean fluctuation of all four peratidns. We can observe that, if the
difference is big, we get points of instability.

In figure 10 are presented maps of the fluctuations in two réiffepoints. On the top there is
map for a stability point and on the bottom for a point of itlity. One can observe that for the
unstable case in some part of the sample we have bigger flisis®f grains and they are more
chaotically distributed . We have not noticed that kind dfi#&our in stability points.

5 CONCLUSIONS

A two-scale numerical approach for granular materials hfeenlproposed, combining DEM
modelling of the granular microstructure with the FEM maaglof the overall response. We
focused on the consistency of the discrete-to-continuppsoach, through the identification of
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Fig. 10. Maps of displacement for variation step for stép(liop) and instability (bottom) points
but this influence is relatively small. For the mean stre$se®LC, the sample size does not

play an important role, but for stability zones it has hugéugnce. In order to not induce "nu-
merical instabilities”, it is very important to make the &gt choice for the size of the sample
(not too small). It is also very important to choose the ottresnall variation step f and small
perturbatiore A*L,

At the small-scale level, we observed a behaviour deperatetitis coefficients, allowing us to
identify the origin of instabilities in the macroscopic pesse. In the instability regime, some
grains loose their contact during small variation steps @ertiurbations. Such microscopic be-

We can observe that boundary conditions have influences an steess and standard deviation,

the numerically-induced macroscopic instabilities.



haviour may be a true physical behaviour, linked to insigbédnd shear banding. As such, it
should not be rejected in general. But the occurrence of suehts far from the failure regime
of the sample, if not limited to a few points but spread oversample in a significant number of
points, may indicate non-relevant numerical behaviours T$a challenge to deal with, maybe
by exploring more changes in the numerical parametersr Aftsonvenient resolution of this
problem, it is possible to perform two-scale FEM-DEM congtigins, for more complicated
samples.
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