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ABSTRACT: We study the macroscopic behavior of granular materials, considered as a con-
sequence of the interactions of individual grains at the micro scale. For this, a computational
homogenization approach is considered. At the small-scalelevel, we consider a granular struc-
ture modeled by Discrete Element Method (DEM). Grain interactions are modeled by normal
and tangential contact laws with friction (Coulumb’s criterion). At the macroscopic level, a nu-
merical solution is constructed by the Finite Element Method (FEM). The upscaling technique
consists in using the response of the DEM model at each Gauss point of the FEM discretisation
to derive numerically the constitutive response. In this process, a tangent operator is generated
together with the stress increment corresponding to the strain increment in the Gauss point. In
order to get more insight on the consistency of the resultingconstitutive response, we compute the
determinant of the acoustic tensor associated with the tangent operator. This quantity is known to
be an indicator of a possible loss of uniqueness locally, at the macro scale, by strain localization
in shear bands. The results of different numerical tests arepresented. Periodic boundary condi-
tions have been compared with the ordinary wall conditions for the Representative Elementary
Volume.

1 INTRODUCTION

The presented study considers a two-scale numerical schemefor the description of the behavior
of granular materials. At the small-scale level, we consider that the granular structure consists
of 2D round rigid grains, modeled by the discrete element method (DEM). At the macroscopic
level, we consider a numerical solution obtained with the Finite Element Method (FEM).

The link between scales is that of the computational homogenization, in which average REV
stress response of the granular microstructure is obtainedin each macroscopic Gauss point of
the FEM mesh as the result of the macroscopic deformation history imposed to the REV. We
also compute the tangent stiffness matrix, at the Gauss point, and the acoustic tensor, which is
an indicator of possible unstable behaviors. The influence of different parameters on the stability
of the macroscopic response is presented through the results of numerical tests.

2 MACRO LINK

2.1 Macroscopic constitutive law

For a given history of the deformation gradient, we compute the global stress response of the
REV. The macroscopic stress results from the average formulaσij = 1

S

∑Nc

c=1
f c

i · l
c
j ; i, j ∈ {x, y},



whereS is the area of the sample,f c
i andlcj are respectively the componenti of the force acting in

the contactc and the componentj of the branch vector joining the mass centers of two grains in
contact (Love 1927). Next, we convert the Cauchy stress intothe Piola-Kirhoff stress (Bonnet &
Wood 1997). The Piola-Kirchoff stress is depended on the history of thegradient of deformation
F (Bilbie et al. 2007), (Bilbie et al. 2008)

P(t) = Γ t{F(τ), τ ∈ [0, t]} (1)

For any history ofF, we assume thatP admits a right time derivativėP with respect tot:

Ṗ = limδt→0

P(t + δt) − P(t)

δt
(2)

We also assume that, for given history ofF till time t, the right-sided derivativėP depends only

on the right time derivativėF, that is :

Ṗ = Θ(Ḟ) (3)

where the functionΘ is generally non-linear with respect to its argumentḞ.
In what follows, we limit our study to the case when the history of F is given byF = I + αG0

with G0 being a fixed tensor andα being time-like loading parameter which runs monotonously

from 0 to 1. In this case we get:̇P = Ξ(α) and by differentiating with respect toα, we get

that Ḟ = G0 along the path. According to the definition of the functionΘ we can write the
approximate formula (Bilbie et al. 2007), (Bilbie et al. 2008):

Θ(G0) ≈
Ξ(α + ∆α) − Ξ(α)

∆α
(4)

2.2 Macroscopic loss of stability - Acoustic tensor

The loss of uniqueness for the rate-type boundary value problems is analysed through the Rice

approach (Rice 1976). Following this analysis we look for the rate of deformation gradientḞ
which is discontinuous along the boundary of a localizationband. It is known that such a dis-
continuity can be written as (Rice 1976):

˙
F 1

kL =
˙

F 0
kL + qkNl (5)

whereN is the normal (||N|| = 1) to the interface,˙F1 is taken on the same side asN and ˙F0 on
the opposite side. The stress vector has to be continuous across the interface :

(

˙
P 1

iJ −
˙

P 0
iJ

)

NJ = 0 (6)

As
˙

P
1

iJ and ˙
P 0

iJ are linked to ˙
F 1

iJ and, respectively,˙F 1
iJ , by Eq. (3), the unknowsq andN have to

satisfy the equation
(

ΘiJ

(

˙F0 + q⊗ N
)

−ΘiJ

(

˙F0
))

NJ = 0 (7)

for given ˙F0.
In the considered macroscopic quasistatic deformation process, the question of loss of ellipticity
therefore reduces to the determination of the valueα for which Eq. (7) has a non-trivial solution



(q,N), q 6= 0.

In our case we restrict the search of non-trivial solutions to the case in which the tensor˙F1 is
closed to ˙F0. This leads to a continuous bifurcation mode in the sense of Rice (Rice 1976).

So, assuming thatΘ is differentiable at ˙F0, Eq. (7) yields, after linearization:

BiJkL

(

˙F0
)

qkNLNJ = 0 (8)

whereBiJkL

(

˙F0
)

= ∂ΘiJ

∂
˙

Fkl

| ˙F=
˙

F0
It is clear that a non-trivial solution exists only if the so-called

acoustic tensorQ, defined byQik = BiJkLNLNJ , is singular, that is only if:

detQ = 0 (9)

For this particular process considered here and given byF = I + αG0, we have seen thatḞ is
constant and equal toG0 and the functionΘ(G0) can be approximated by Eq.(4).
As to the derivation ofΘ, it can be numerically approximated by finite differences:

BiJkL =
ΘiJ(G0 + ε∆kL)− θiJ(G0)

ε
(10)

where∆kL is a second-order tensor such that all its components are equal to 0 except thekL one
which is equal to 1. In Fig. 1) we have represented the stress at the pointδf∆α (in the same
linear direction as point n) and stresses in points with perturbationsε∆kL. We also computed the
tangent matrix (Bilbie et al. 2007), (Bilbie et al. 2008) as :

BiJkL =
PiJ(αn+1 + δf∆α + ε∆kL) − PiJ(αn+1 + δf∆α)

δf ε∆kL
(11)

whereδf∆α is a small variation step in the main direction,ε∆kL is a small perturbation in the
directionkL.

Fig. 1. Schematic representation of the computation of the tangent matrix



3 MICRO-SCALE MODELING: DEM

The system consist of a set ofN polydisperse discs, with the random radii homogeneously dis-
tributed betweenRmin andRmax = 2.5Rmin. This system is simulated using a discrete element
method - molecular dynamics with a third-order predictor-corrector scheme (Allen & Tildesley
1994). All grains interact via a linear elastic law and Coulomb friction when they are in contact
(Cundal & Strack 1979). The normal contact forcefn is related to the normal apparent interpen-
etrationδ of the contact asfn = knδ, wherekn is a normal stiffness coefficient (δ > 0 if a contact
is present,δ = 0 if there is no contact). The tangential componentft of the contact force is pro-
portional to the tangential elastic relative displacement, with a tangential stiffness coefficientkt.
The Coulomb condition|ft| ≤ µfn requires an incremental evaluation offt in each time step,
which leads to some amount of slip each time one of the equalities ft = ±µfn is imposed. A
normal viscous component opposing the relative normal motion of any pair of grains in contact
is also added to the elastic forcefn to obtain a critical damping of the dynamics. We consider
two different boundary conditions:Periodic Limit Condition(PLC) andrigid wall (WLC), cf.
Fig.2

Fig. 2. Shape of the PLC sample with normal contact forces (left) and cell of the sample with rigid walls (right)

The idea of PLC is that every grain is not only in contact with neighbours it the simulated
cell (primary box), but also with some grains in ’image cell’which are replicated to infinity by
rigid translations in 2D Cartesian directions. This replicas contain the same sets of grains as the
primary cell (Ellero 2004). Finally, if one grain is moving out of primary cell, it appears on the
opposide side of cell - with the same velocity and the same momentum.
Both PLC andWLC conditions were implemented. In every step we applied an increment of
strain and, after DEM computations, we recover the stresses.
We have considered different sizes of the samples (from 400 grains to 9801) and different veloc-
ities of the applied strains and we analyzed their influence on the behavior of the sample and the
stress response.



4 RESULTS

The normal stiffnes of contact in the DEM is calculated for the 2D, where stiffness parameter
(Combe & Roux )κ = kn

σ0

, wherekn is a stiffness andσ0 is an isotropic stress applied to the
grain assembly. The value ofκ is taken 1000, that corresponds to quite rigid bodies. The value
of the tangential stiffness is equal to the normal stiffnesskt = kn. Friction coefficient is taken
asµ = 0.5. We have considered different boundary conditions, different sizes of the samples
(number of grains), and different velocities of the appliedstrains.
The first example is abiaxial test without volume changes. The final strain matrix isε =

[

0.2

0

0

−0.2

]

,
where negative sign is for compression. We have performed 10tests for each size of the sample
and we have calculated mean stress and its standard deviations. We have done it for both types
of boundary conditions:PLC andWLC. The stress-strain response resulting for different size of
the sample are presented in Fig. 3 and Fig. 4 forPLC andWLC, respectively. The y-axis is aq

p
,

whereq = σyy−σxx

2
andp is a mean value of stressp = σyy+σxx

2
. In the diagram Fig.3 and 4 one

can see standard deviations of the sample for theq

p
.
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Fig. 3. Mean stress and standard deviation of PLC samples

We can observe that, for PLC and WLC, mean stress is increasing when the number of grains
is decreasing, but the difference is small. On the other handthe standard deviation is decreasing
with increase of the sample size and over 3025 grains it is established (Fig. 3 and 4), but for PLC
samples there is less noise.
A second series of tests was made to check the influence of the velocity of the applied strain.

It was done by changing the so-calledInertial numberI = ε̇
√

<m>
σ0

(Roux & Chevoir 2005),

whereε̇ is a velocity of strain,< m > is the mean mass of grains andσ0 is the stress in the
isotropic state. In figure 5 different I (beetwen5,6 · 10−3 and2,8 · 10−5) are presented. It was
done for a sample cell with 3025 grains, for the final strain matrix ε =

[

0.2

0

0

−0.2

]

(test with no
volume changes). One can observe that, for the strain-stress diagram, the influence of I is rather
small. This is due to the fact that in the code there is strong equilibrium condition.

Next, we performed tests for checking the stability in the macro level (biaxial test with and
without volume changes, uniaxial and shearing). They were done for samples with 400, 1024,
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Fig. 4. Mean stress and standard deviation of WALL samples

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.05  0.1  0.15  0.2

q/
p

-εyy

5,60E-03
2,80E-03
9,30E-04
2,80E-04
9,30E-05
5,60E-05
2,80E-05

Fig. 5. Different inertial number I for sample with 3025 grains

3025 and 4900 grains.
The influence of the sample size for shearing test for stressP − K12 is presented in Fig. 6 (to
be more clear, the diagrams were moved up on y-axis). Stars represent instability zones, that
correspond to thedetQ < 0, whereQ is the acoustic tensor. This test was made forδf = 0.1 and
perturbationε∆kL = 2 · 10−6.

One can observe that if the size of sample is increasing we obtain more important stability

zones. All tests were done with similarInertial numberI = ε̇
√

<m>
σ0

. I was set between1.2 ·10−3

to 2.1 · 10−3 for iterations, and1.2 · 10−4 to 2.1 · 10−4 for the small variation stepδfδα.
We have also done tests to check the influence of the size of thesmall variation stepδfδα

and the small perturbationsε∆kL. We have done it for shearing test for sample with 3025 grains.
First, the perturbation was taken as2 · 10−6. Values for the small variation stepδf were be-
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Fig. 6. Influence of the size of sample on macroscopic stability

tween 0.05 to 1 (Fig. 7). Next, the small variation step was constant and equal to 0.01, but the
perturbation step was between2 · 10−6 to 2 · 10−3 (Fig. 8).
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Fig. 7. Influence of the variation step on macroscopic stability

In this case we have obtained larger stability zones for smaller values of small variation step
δfδα and for smaller values of perturbation value. But, it is important to take the value ofδfδα

carefully to be still in elasto-plasticy behaviour (not only elasticity).
One important point is the identification of the microscopicorigins for the macro instabilities.
To do this we are using the so-calledfluctuations of displacement of grainsδ

mn
i = (rn

i − r
m
i )−

∆εrm
i , whererm

i ,rn
i are the position of graini in step m and n, respectively and∆ε is a tensor

of the increment of the strain from stepm to n. Next we compute the mean value of fluctuation
for all grains in the cell for one iteration (∆εxy isn constant):〈δmn〉 = 1

N

∑N

i=1
‖(δmn

i )‖2 where
N is the number of grains.
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Fig. 8. Influence of the perturbation value on macroscopic stability
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Fig. 9. Difference of the fluctuation of the grains (crosses correspond with the instability points)

In figure 9 we can observe changing of the fluctuation of the grains in the sample with 3025
particles in shearing. The diagram prezents the differancebeetwen the fluctuation of grains in
small variation step and mean fluctuation of all four perturbations. We can observe that, if the
difference is big, we get points of instability.
In figure 10 are presented maps of the fluctuations in two different points. On the top there is
map for a stability point and on the bottom for a point of instability. One can observe that for the
unstable case in some part of the sample we have bigger fluctuations of grains and they are more
chaotically distributed . We have not noticed that kind of behaviour in stability points.

5 CONCLUSIONS

A two-scale numerical approach for granular materials has been proposed, combining DEM
modelling of the granular microstructure with the FEM modeling of the overall response. We
focused on the consistency of the discrete-to-continuous approach, through the identification of
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Fig. 10. Maps of displacement for variation step for stability (top) and instability (bottom) points

the numerically-induced macroscopic instabilities.
We can observe that boundary conditions have influences on mean stress and standard deviation,
but this influence is relatively small. For the mean stressesfor PLC, the sample size does not
play an important role, but for stability zones it has huge influence. In order to not induce ”nu-
merical instabilities”, it is very important to make the correct choice for the size of the sample
(not too small). It is also very important to choose the correct small variation stepδf and small
perturbationε∆kL.
At the small-scale level, we observed a behaviour dependenton this coefficients, allowing us to
identify the origin of instabilities in the macroscopic response. In the instability regime, some
grains loose their contact during small variation steps andperturbations. Such microscopic be-



haviour may be a true physical behaviour, linked to instability and shear banding. As such, it
should not be rejected in general. But the occurrence of suchevents far from the failure regime
of the sample, if not limited to a few points but spread over the sample in a significant number of
points, may indicate non-relevant numerical behaviour. This is a challenge to deal with, maybe
by exploring more changes in the numerical parameters. After a convenient resolution of this
problem, it is possible to perform two-scale FEM-DEM computations, for more complicated
samples.
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