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ABSTRACT: Experimental and numerical tests of the trap-door problem have been carried out, involving several 
granular materials. Three phases have been observed in the load transfer mechanism, as the trap-door is 
moved downward. The classical pattern for the description of this type of problem (a vertical plane of failure at 
each edge of the trap-door) corresponds to the third phase observed. The previous phases correspond to the 
maximal load transfer and then to the expansion of the granular material from the bottom to the top of the 
granular layer. Discrete numerical modelling has been processed to investigate the effects of the particles size 
and of the shear strength parameters on the mechanisms observed. The respective role of peak and residual 
friction angles has been identified. 

1 Introduction 

Granular materials present complex global behaviours strongly depending on the initial state and on the type of 
solicitations, leading to a great variety of applications (Garca-Rojo, 2005). The problem of the trap-door 
(Terzaghi, 1936) is a solicitation that hides a lot of technological applications and in particular in civil engineering 
or in mechanics.  
Initially studied by Terzaghi (Terzaghi, 1936; Terzaghi, 1943), the trap-door problem consists in the description 
of mechanisms occurring in a granular material layer when a trap-door located below is moved. In the sense of 
Terzaghi, two distinct modes can be highlighted according to the direction in which the trap-door is moved. The 
passive mode corresponds to a trap-door moved upward while the active mode corresponds to a downward trap-
door displacement.  
The first description of the failure mechanism (Marston, 1913; Terzaghi, 1943) is based on the assumption that 
the column of granular material above the trap-door slides vertically with the trap-door while the remaining 
material is fixed. This assumption leads to the analogy with the problem of stresses in silos initially described by 
Janssen (Janssen, 1895) and recently discussed (Rotter, 1998; Kolb, 1999; Vanel, 1999).  
The problem of the trap-door has been commonly studied in a plan strain conditions (Terzaghi, 1943;  Ladanyi, 
1969; Vardoulakis, 1981; Tanaka, 1993) and the kinematics of the observed phenomena confirm the existence 
of a vertical sliding column (Ladanyi, 1969; Vardoulakis, 1981) but not for small displacements of the trap-door. 
This description can be accepted as far as the displacement of the trap-door is sufficient. The first analytical 
solutions of the trap-door problem are similar to the one developed by Janssen (Janssen, 1895) for the 
problematic of silos as he introduced a stress ratio K= σx/ σz of the horizontal stress σx to the vertical stress σz. 
These analytical solutions considered, for the stress ratio K, the Rankine active pressure coefficient (Rankine, 
1857). McKelvey (McKelvey, 1994) preferred the use of the Handy (Handy, 1985) coefficient. Contrary to 
Janssen who deduced a formulation of the vertical stress occurring in the granular layer from the equilibrium of a 
horizontal slice of the sliding granular mass, Handy considered the equilibrium of a catenary shaped slice 
instead. 
Despite the question of the value of the stress coefficient, a general acceptance exists concerning the 
mechanism of a column sliding between vertical interfaces. Nevertheless for small displacement of the trap-
door, the observed mechanism differs from the classical description and consists in the movements of failure 
planes. This transitional state has been described by Vardoulakis et al. (Vardoulakis, 1981) as the propagation 
of an expanding zone of the granular matter from the bottom to the top of the layer converging to a failure body 
bounded by two vertical planes, located at each edge of the trap-door. This description implies a varying 
orientation of the failure planes, depending on the amplitude of trap-door displacement. On the contrary, Tanaka 
and Sakai (Tanaka, 1993) characterized the transitional state by the continuous propagation of two symmetrical 
shear bands in a particular direction until they reach the layer top.  
The displacement of the trap-door is a crucial parameter of the trap-door problem because it determines the 
amplitude of the load transfers involved. 
Experimental and numerical tests have been carried out to reproduce the trap-door problem in the plain strain 
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case. The load acting on the trap-door has been monitored or computed during its vertical displacement in order 
to quantify the macro-phenomena. Photographs taken during tests and numerical view of the granular assembly 
complete the analysis in a kinematics point of view.  

2 Experimental results 

2.1 Design of apparatus 

The physical model consists of a box 1.0x0.4 m in plan (Fig. 1) with a Plexiglas front. Depending on the case 
studied the height of the test box ranges from 0.15 m to 0.80 m. As shown on Figure 1, a 0.20x0.40 m trapdoor 
is located in the bottom side of the box. This trapdoor is incrementally moved downward in order to induce load 
transfers in the granular layer placed above. The vertical residual effort, called F, applied by the granular layer 
on the trapdoor is measured with a load cell with an accuracy of 1 N. In order to limit frictional effects of walls on 
the measurements, the residual effort F is measured in the centred half of the trapdoor (Fig. 1). The mean 
pressure p acting on the trapdoor is deduced from F and from trapdoor dimensions. A dial test indicator gives 
the trapdoor vertical displacement called δ. δ ranges from 0 to 0.10 m with an accuracy of 1/10 mm. In terms of 
the kinematics, the behaviour of the granular layer is deduced from the displacement of horizontal coloured 
strips of the granular matter by the use of digital image analysis software. 

 

 

Figure 1. Diagram of the test box  Figure 2. Grading of the materials tested 

2.2 Materials 

Dry sand and gravel have been tested in a loose initial state. The grading of the granular materials is 
represented on Fig. 2. The particles shape is almost spherical for the sand and very angular for the gravel. The 
frictional parameters of the different materials have been deduced from a classical laboratory test: the triaxial 
test.  

Table 1. Physical and mechanical properties of tested materials. 

Material sand gravel 

grain density γs [kN/m3] 2610 2650 

density in test box γi [kN/m3] 1700 ± 50 1517 ± 50 

mean diameter D50 [mm] 0.5 8.0 

φp [°] 49.0 56.0 

φr [°] 42.5 44.5 

 
In order to test the specimens in similar stress states than those observed in the test-box, very low confining 
stresses have been used: 5 kPa, 10 kPa and 15 kPa. These low confining levels have been obtained by 
applying an equivalent depression with a vacuum cell.  
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A peak friction angle φp is deduced from the maximal deviatoric stresses reached for each confining pressure 
with the assumption of a Mohr-Coulomb failure criterion. A residual friction angle has been also measured from 
the maximal slope of a stable stacking of granular material. φr characterizes the minimal shear strength level of 
the material that should be reached under very large strain level in a triaxial test. Table 1 gives some physical 
and mechanical characteristics of the different materials tested. 

2.3 Procedure 

For both sand and gravel, several layer thicknesses h were tested from 0.05 m to 0.60 m. The granular material 
is poured in the test box with no drop height by 2 cm layers. The granular material obtained is in his loosest state 
of density. This procedure gives uniform initial apparent density for each material (Tab. 1). Furthermore, for each 
test, the initial mean pressure acting on the trap is compared to the theoretical value γih where γi is the initial 
density of the material. The difference observed between theoretical and experimental values is less than 2 % so 
that the frictional effect of walls on the measurement of F in the central part of the trap-door can be neglected. 

2.4 Mechanisms description 

For both granular materials tested, the kinematics involved during trap-door tests break down into three distinct 
phases. These phases have to be compared to the variation of the pressure p with the trap-door displacement δ 
(Fig. 3) 

 

Figure 3. Example of a typical result for a trap-door test p versus δ (gravel, h=0.15 m): (a) first phase, (b) 
transitional phase, (c) final phase. 

The initial mechanism (Fig. 4.a) occurs for very small displacement of the trapdoor (δ≈1-3 mm) and corresponds 
to the expansion of the granular material located just above the trap-door.  

 
(a) 

 
(b) 

 
(c) 

Figure 4. Displacement pattern for the three phases observed during trap-door displacement: (a) first phase, (b) 
transitional phase, (c) final phase. 

The failure boundaries of this area start at each edge of the trap-door in vertical direction and then converge to 
axis of symmetry of the trap-door. The initial state corresponds to the lowest pressure pmin applied on the trap-
door (Fig. 3). As shown on Fig. 5, the value of pmin is constant as the granular layer thickness exceeds 0.20 m. In 
addition, the value of pmin is lower for the sand than for the gravel. 
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To this first state succeeds a transitional phase (Fig. 4.b) during which the initial dilatant zone expands until it 
reaches the surface of the granular layer. This dilatant zone is wedge-shaped until it reaches the surface of 
granular layer. This phase can be observed for values of δ varying from 1 mm to 40 mm, depending on h and on 
the material tested. The pressure p increases with a constant rate until it reaches a threshold depending on the 
granular layer thickness h (Fig. 3). During the transitional phase, the amplitude of load transfers between the 
subsiding zone and the remaining part of the layer depends on the materials tested. Indeed, no load transfers 
between subsiding zone and remaining material are observed in the case of the sand, explaining the greater 
slope of the curve p versus δ during this phase. 
The classical failure pattern, called here final state (Fig. 4.c), only occurs after these both first states. The final 
state corresponds to the vertical alignment of two vertical slipping planes located at each edge of the trap-door. 
The final state occurs for values of δ increasing with h. 
 

(a) (b)  

Figure 5. Mean vertical pressure p measured on the trapdoor versus trapdoor downward displacement δ for the 
sand (a) and for the gravel (b). 

2.5 Comparison with analytical solution 

Concerning the final phase, the kinematics is analogue for the experimental results and for the solution of 
Terzaghi (Terzaghi, 1943): two vertical planes of sliding located at each edge of the trap-door (see Fig. 4.c). 
Experimental and analytical results can be compared. The solution of Terzaghi consists in writing the equilibrium 
condition in the z-direction of a horizontal slice of thickness dz located between these planes at a vertical axis 
position z gives the following expression of the stress pt acting on the trap-door:  
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with γ the granular material density, L the width of the trapdoor, φ the friction angle of the granular material and 
K the ratio between horizontal and vertical stresses in the granular material. Terzaghi considered a K ratio 
defined by Ka=(1-sinφ)/(1+sinφ) which correspond to the Rankine active earth pressure coefficient (Rankine, 
1857). The friction angle considered in Eq. 1 and in the expression of K is φ= φr , because of the large 
displacements observed in the granular mass at the final state. However, Katanφ ∈ [0.158,0.192], for φ ∈ 
[20°,50°] so the influence of the friction parameters of the material on the product Katanφ is limited. 
The comparison of the pressure pt obtained with the model of Terzaghi and the experimental results pf in the 
final state is shown on Fig. 6.a for the sand and on Fig. 6.b for the gravel. 
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(a) (b)  

Figure 6. Comparison of the experimental final value of the pressure measured on the trap-door pf with the 
prediction pt of the model of Terzaghi (Terzaghi, 1943): (a) case of the sand, (b) case of the gravel. 

A satisfying correlation exists between experimental results and the predictions of the model of Terzaghi for 
h≤0.20 m or in other words, for h≤L. For greater values of h, the prediction given by the solution of Terzaghi 
overestimates the pressure acting on the trap-door.  
Many differences have been observed between both materials with regard to their behaviour in the trap-door 
test: 
- during the first phase with different values of pmin, 
- during the transitional phase with different load transfers amplitude between subsiding zone and remaining part 
of the granular layer, 
- during the final phase with the existence of a peak pressure observed for the sand and not for gravel. 
In order to make light of the influence of several parameters such as frictional parameters and particles size, 
numerical modelling using 3D molecular dynamics has been performed. 

3 Numerical results 

Distinct Element Method (DEM) is an accurate means to reproduce the behaviour of granular materials such as 
soils, taking into account both small or large displacements into account. Three materials are tested referred to 
as C1, C2 and C3. C1 and C2 differ only by the size of particles whereas C2 and C3 differ by frictional parameters. 

3.1 The Distinct Element Method 

The modelled granular material is composed on rigid particles that interact with each other through deformable 
contact points. At each contact point, normal and tangential contact forces are governed by linear contact laws. 
The normal contact force between two particles i and j can be written fn

ij = Knh
ij where Kn represents the normal 

stiffness of the contact and hij the overlap of the two particles i and j. The tangential contact force ft
ij is linked to 

the tangential incremental relative displacement ε of particles i and j with a stiffness Kt by the expression 
(Cundall, 1979) 

t

ij
t K
d

df =
ε

 with 
ij
n

ij
t ff µ≤     (2) 

with µ the contact friction coefficient. The integration of Newton’s second law – using finite difference – of motion 
for each particle for a time step allows to calculate the new acceleration for each particle and so to update the 
positions of the particles of the assembly. The software used here and developed in 3S-R laboratory – SDEC 
(Magnier, 1997), is based on 3D molecular dynamics principles. 

3.2 Assembly generating and testing processes 

The numerical assemblies of particles are tested in a test box presenting the same geometry as the 
experimental device (Fig. 1). The dimensions of the modelled trapdoor are L=0.20 m and l=0.10 m (for C2 and 
C3). In order to quantify the effect of scale on the load transfers, one test has been carried out with a trap-door 
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twice wider: L=0.20 m and l=0.20 m (for C1). The modelled particles assemblies are set up within this test box 
without gravity and using the Radius Expansion with Decrease of Friction process (REDF) (Chareyre, 2005). 
Particle diameters are progressively increased until an isotropic pressure threshold Pmax=500 Pa is reached. 
The time that this threshold is reached, the porosity η of the assembly (defined by the ratio of the volume of 
voids to the total volume of the assembly) is assumed to be maximal η= ηmax. As the isotropic pressure can not 
be reduced under the threshold, the contact friction coefficient µ is reduced so that the particle expansion can 
continue. This process is carried on until the contact friction coefficient µ=0. The porosity is then minimal: 
η=ηmin. With this process, an assembly can be generated at any porosity included in the range [ηmin, ηmax]. After 
the generation of the assembly, the gravity is applied to the granular material. The trap-door is then moved 
downward with increment δ=1 mm. The thickness of each granular material layer tested here is equal to h=0.20 
m.  

3.3 Material properties 

For each granular assembly, the ratio of the maximal diameter dmax of the particles to the minimal one dmin is 
constant equal to dmax/dmin=1.25. In the range [dmin,dmax], each diameter value d is equiprobable. The number of 
particles is constant for each modelling and equal to 23000. The density of particles is also constant and equal 
to γs=2650 kg/m3. The particles, referred to as clusters, is composed of a non divisible assembly of two spheres 
of same diameter ξ. The distance between both centres is equal to 0.95ξ. 

Table 2. Physical and mechanical properties of numerical assemblies. 

 Material C1 C2 C3 

dmin (mm) 6.58 5.21 5.21 

dmax (mm) 17.43 13.87 13.87 

η 0.405 0.405 0.405 
Micromechanical 

properties 

µ 1.466 1.466 0.521 

E 5.90 5.90 4.95 

ν 0.1245 0.1245 0.1258 

φp [°] 46.2 46.2 35.2 
Micromechanical 

properties 

φr [°] 31.6 31.6 31.3 

 
The contact stiffness is constant from one assembly to another. The stiffness level κ (Combe, 2003) of the 
granular assemblies leads to a ratio of the mean contact overlap <h> between two particles to the mean particle 
diameter <d> to 1/κ=(<h>/<d>)=3.10-4. All assemblies are characterized by a ratio Kt/Kn=0.75 between 
tangential and normal stiffness. Two values of µ have been used (see Tab. 2) 
The macro-mechanical characteristics of the granular assemblies are deduced from the modelling of triaxial 
tests. These tests are modelled with a constant confining stress σ2= σ3= 5 kPa and with a constant strain 
velocity. The shear strength of the granular materials is characterized by two different friction angles. The peak 
friction angle φp represents the highest maximal shear strength of the assembly. The residual shear strength is 
characterized by the residual friction angle φr and occurs for large axial strain rates. Three numerical assemblies 
have been tested in the trap-door test. The mechanical characteristics of the three assemblies are given in Tab. 
2. 

3.4 Numerical tests results 

The kinematics observed in numerical tests is the same as in experimental tests. The three phases observed 
experimentally – initial, transient, and final phases – are also observed with the numerical model (Fig. 7 and Fig. 
8).  
Effect of particle size can be deduced from the comparison of the results with materials C1 and C2 (Fig. 8.a). 
Particles of C2 are twice smaller in volume as particles of C1. Effect of the shear strength parameters (φp, φr) can 
be deduced from the comparison of the results obtained with C2 and C3 (Fig. 8.a). 
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(a) (b) (c) 

Figure 7. Displacement field of the particles of the granular layer for material C1: (a) first phase (δ=6 mm), (b) 
transitional phase (δ=19 mm), (c) final phase (δ=57 mm). 

(a) (b)  

Figure 8: Numerical results of the trap-door tests p versus δ: (a) C1 and C2, (b) C2 and C3. 

The variations of the pressure acting on the trap-door p with δ are strictly the same for C1 and C2 and during the 
three different phases. No effect of the particle size is recognized in the trap-door problem in the active mode 
(trap moved downward) as experimentally observed by Tanaka and Sakai (1993). 
 

 (a) (b)  

Figure 9. Contact force distribution in the granular layer: (a) contact forces lower than the mean contact force (in 
intensity), (b) contact forces higher than the mean contact force (in intensity). 

By comparison between results obtained with C2 and C3 (φp,(C2)>φp,(C3) and φr(C2)=φr(C3)), we can deduce 
from Figure 8.b that the minimal pressure pmin observed on the trap-door during the first phase depends on the 
peak friction angle φp as observed in experimental tests with sand and gravel. On the contrary, the final state 
depends on the critical friction angle φr.  
Contact forces fields are an accurate way to appreciate how the forces acting in the granular layer are 
transferred to the stationary part of its support. Two types of forces can be considered: forces with higher 
intensity than the mean contact force (strong force network) and forces with lower intensity than the mean 
contact force (weak network). As shown on Fig 9, load transfer pattern is noticeable only within the strong force 
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network. The weak force network shows a uniform distribution of the weak contact forces in the granular layer. 

4 Conclusion 

As shown with experimental and numerical results, three phases characterize the trap-door test in the active 
mode. Each phase corresponds to different load transfer amplitudes. Load transfers amplitude decreases as the 
displacement of the trap-door increases.  
The maximal load transfer phase is observed for very small trap-door displacements. As shown with the 
numerical model, load transfer amplitude during this phase is related to the peak friction angle.  
The classical mechanisms description considering two vertical planes of failure occurs only for largest values of 
trap-door displacement. The amplitude of load transfers in the final phase is related to the residual friction angle. 
The weight of the granular layer is transferred to the stationary parts of the support essentially through the strong 
contact force network. 
The Distinct Element Method allows to reproduce well the trap-door phenomenon and can be applied to 
determinate the influence of several parameters which are experimentally difficult to control. Influence of size 
and frictional parameters have been studied, impact of particle shapes and grading need to be investigated. 
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