
Discrete numerical simulation, quasistatic deformation and the origins of
strain in granular materials.
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Systematic numerical simulations of model dense granular materials in monotonous, quasistatic deformation
reveal the existence of two different régimes. In the first one, the macroscopic strains stem from the deformation
of contacts. The motion can be calculated by purely static means, without inertia, stress controlled or strain rate
controlled simulations yield identical smooth rheological curves for a same sample. In the second régime,
strains are essentially due to instabilities of the contact network, the approach to the limits of large samples and
of small strain rates is considerably slower and the material is more sensitive to perturbations. These results are
discussed and related to experiments : measurements of elastic moduli with very small strain increments, and
slow deformation (creep) under constant stress.

1 INTRODUCTION

Despite its now widespread use (Kishino 2001), dis-
crete numerical simulation of granular materials, mo-
tivated either by the investigation of small scale (close
to the grain size) phenomena, or by the study of mi-
croscopic origins of known macroscopic laws, still
faces difficulties. Microscopic parameters, some of
which are to be defined at the even smaller scale of the
contact, are incompletely known. Macroscopic con-
stitutive laws do not emerge easily out of noisy simu-
lation curves, and the numerically observed dynamic
sequences of rearrangements might appear to contra-
dict the traditional macroscopic quasistatic assump-
tion. Detailed and quantitative comparisons with ex-
periments can be used to adjust microscopic models,
but a systematic exploration of the effect of the vari-
ous parameters throughout some admissible range is
also worthwhile. This is the purpose of the present
study, which also addresses the fundamental issues
of the macroscopic and quasistatic limits, in the case
of the biaxial compression of dense, two-dimensional
(2D) samples of disks.

In section 2, we introduce the model and the nu-
merical methods and define dimensionless parameters
that are robust indicators of the relative importance
of different phenomena. Rheological curves can be
evaluated in the large sample limit (section 3), and
their sensitivity to parameters assessed. We observe
(section 4) two different mechanical régimes, accord-
ing to whether the dominant microscopic origin of

strain is material deformation in the contacts or re-
arrangements of the contact network. Connections to
some experimental observations are suggested in part
5, while the conclusion section outlines further per-
spectives.

2 NUMERICAL MODEL AND PROCEDURES
2.1 Grain-level mechanics

Our computational procedure is one of the simplest
types of ‘molecular dynamics’ or ‘discrete element’
method (Cundall and Strack 1979) for solid grains.
We consider 2D assemblies of disks, with diameters
uniformly distributed between ��� and �, and masses
and moments of inertia evaluated accordingly (as for
homogeneous solid cylinders of equal lengths). �
will denote the mass of a disk of diameter �, and �
the number of disks.

These grains interact in their contacts with a linear
elastic law and Coulomb friction. The normal con-
tact force �� is thus related to the normal deflec-
tion (or apparent interpenetration) � of the contact as
�� � ���� ���, � being the Heaviside step func-
tion (equal to � for � 	 �, to � otherwise). The tangen-
tial component �� of the contact force is proportional
to the tangential elastic relative displacement, with a
tangential stiffness coefficient�� . The Coulomb con-
dition ��� � � 
�� requires an incremental evaluation
of �� every time step, which leads to some amount of
slip each time one of the equalities �� � �
�� is
imposed. A normal viscous component opposing the
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relative normal motion of any pair of grains in contact
is also added to the elastic force �� . Such a term – of
unclear physical origin in dense multicontact systems
– is often introduced to ease the approach to mechan-
ical equilibrium. Its influence will be assessed in part
3. The viscous force is proportional to the normal rel-
ative velocity, and the damping coefficient in the con-
tact between grains � and � is a constant fraction 

(� � 
 � �) of the critical value ��������

�����
����. (In

a binary collision the normal ‘restitution coefficient’
is � for 
 � � and � for 
 � �). 
 , �� , �� , and 

are the same in all contacts. The motion of grains is
calculated on solving Newton’s equations.

2.2 Numerical compression tests

Two different types of boundary conditions are used :
either the container walls are physical objects, with
masses, satisfying Newton’s equations (but requested
to move in the direction perpendicular to their ori-
entation), or periodic boundary conditions (no walls)
are implemented. In both cases, the changes in cell
size and shape under controlled stress involves spe-
cific dynamical parameters which could be discussed
in more detail. Here we will simply deem such param-
eter choice innocuous if results are reproducible, size-
independent and consistent. We use soil mechanics
sign conventions for stresses and strains. Samples are
first compressed isotropically under a constant pres-
sure � . Once a mechanical equilibrium is reached
under pressure � , samples are submitted to biaxial
compression tests. The lateral stress, �� is maintained
equal to � , while either �� is increased at a con-
stant rate ��� (a procedure hereafter referred to as SRC,
for strain rate controlled) or �� is stepwise increased
by small fractions of � , and one waits for the next
equilibrium configuration before changing �� (a SIC,
for stress increment controlled, procedure). In the se-
quel � denotes the ratio ��� � ������, while �� and
�� � ��� ��� ���� are respectively termed ‘axial’ and
‘volumetric’ strain, in analogy with 3D axisymmetri-
cal triaxial tests.

2.3 Dimensional analysis

Rheological curves and internal sample states ob-
tained in monotonous biaxial tests are defined in the
macroscopic limit � � �. If expressed by re-
lations between dimensionless quantities ��, �, �� ,
they should depend on the friction coefficient 
 and
on ratio ����� , and on three other dimensionless
parameters: � � ���� , the stiffness parameter,
which expresses the level of contact deformation, � �

���
�
��� , the inertia parameter, evaluating, in SRC

(constant ���) tests, the importance of dynamical ef-
fects, and 
 , the damping parameter, introduced in
paragraph 2.1, characterizing viscous dissipation. The

contact coordination number is a decreasing function
of �. The quasistatic limit is the limit of small �.

3 BIAXIAL COMPRESSION OF DENSE SYS-
TEMS : RESULTS

3.1 Preparation, initial states, procedures.

The sample preparation procedure is well known to
exert a strong influence on the mechanical properties
of a granular sample as, in particular, dense or loose
initial states respond differently (Wood 1990) to load
increments. Moreover, experiments also showed that
density is not sufficient to determine the behaviour in
a triaxial test (Benahmed 2001). Numerical simula-
tions may in principle attempt to imitate as closely
as possible laboratory experiments. The simulations
of such processes as deposition under gravity within
a walled container is however difficult, as it requires
large number of particles. Inhomogeneous states one
obtains in such cases request samples much larger
then a representative volume element, which is itself
much larger than the grain size. Moreover, the transi-
tion from an initial fluid-like configuration to a solid-
like grain assembly is bound to be sensible to static
and dynamic parameters (Silbert et al. 2001).

Here we focus on the slow quasistatic deforma-
tion of certain types of granular assemblies, once
they have been prepared in some well defined ini-
tial state. Therefore we leave a detailed (and nec-
essary) study of the preparation process to future
research, and adopt a simple numerical procedure
which provides us with homogeneous, reproducible,
sample size -independent initial states in equilibrium
under an isotropic pressure. The numerical procedure
is an isotropic, monotonous compaction from an ini-
tial gas-like configuration with a solid fraction 	 of
about ��
. To obtain a dense sample, a different,
smaller value is attributed to the coefficient of friction
in this initial dynamic compression step. Two series of
samples are studied here. The first one – called series
A hereafter – was prepared between solid, friction-
less walls. It was observed in that case that one had
to set 
 to zero in the preparation stage if we were to
obtain a homogeneous stress field. Simulations of se-
ries A were therefore performed starting from the very
dense states which result from a compression with-
out intergranular friction (Combe 2001). The results
below, some of which were presented in (Roux and
Combe 2002), were obtained with 
 � ���� during
biaxial compressions, and a rigidity level � � ���.
����� was generally set to ���. Biaxial tests were
SRI, with small � steps Æ� � ����. Each succes-
sive mechanical equilibrium is deemed attained when
the total force (or torque) on each grain is less than
������ (resp. ������� ) and when the relative dif-
ference between the internal overall stresses (deduced
from non-viscous intergranular forces) and their pre-
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� 	 � �� (%)
��� �����
� ������ ����� ���� ����
��� ������� ������ ��
�� ���� ���
��� ������� ������ ����� ����� 
��

Table 1: Initial state data for series B simulations.

scribed values is less than ����. 
 was set to high val-
ues (near �) and � ranged from 1024 to 4900. In the
initial isotropic state, the solid fraction (extrapolated
to � � �) is 	 � ����� � �����, all but ���
 of
the disks carry forces and the coordination number,
ignoring those inactive grains, is � � ����, very close
to the isostatic limit (Roux 2000) of � reached with
rigid, frictionless disks in equilibrium.

For the second series of simulations, series B, we
used periodic boundary conditions. Samples are thus
devoid of edge effects. They shrink homogeneously
in the isotropic compression stage. Series B samples
were compressed with 
 � ����, and subsequent bi-
axial tests performed with 
 � ���. Different stiff-
ness levels, (� � ���, ��� and ���) were used, with
����� fixed to �, as well as different inertia param-
eters � (����, ����, sometimes ����). SRC tests were
compared to SIC ones (with Æ� � ���� and 
 � �).
Samples of 1400 and 5600 disks were simulated. The
initial solid fraction, due to the finite 
 value during
compression, is lower than for A samples, as well
as the coordination number � among force-carrying
disks. Values of 	, �, and the fraction of inactive disks
��, for the investigated � values are given in table 1.
The typical aspect of � versus �� curves is illustrated
on fig. 1, for series B samples with � � ��� and
� � ����. They are characteristic of very dense sam-
ples, as in (Kuhn 1999).

3.2 Stress-strain curves and macroscopic limit.

The increase of � with �� is initially quite fast, � reach-
ing about ��� for �� � ����. Then the deviator stress
keeps increasing and reaches an apparent plateau for
�� � ����. Those dense samples are markedly dilatant
(fig. 4 below), after a very small initial contraction
their volume steadily increases, even after � appears
to have levelled off. The important stress fluctuations
in those SRC tests is striking on fig. 1, but are con-
siderably reduced, as well as sample-to-sample dif-
ferences, as � increases from ���� to �
��. Dila-
tancy curves (see below) are smoother. Smooth stress-
strain curves can thus be expected in the macroscopic
limit � � �. This was more carefully checked for
simulation series �, on studying three sample sizes :
fig. 2 below shows the average (solid curves) and the
zone extending to one standard deviation around it
(shaded zones), for � measured as a function of �� for
� � ���� (26 samples), � � ���� (10 samples), and
� � ���� (7 samples). Fig. 2 does indicate a system-

Figure 1: � versus axial strain �� in B samples of 2
different sizes.

atic decrease of the fluctuation level, compatible with
a regression as �����, just like for an average over a
number of independent contributions (subsystems of
representative size) proportional to � . Series A sam-
ples respond in a quite similar way to deviator stresses
as type B ones (although of course, due to differences
in initial states, 
 and �, constitutive laws will differ).
There is a fast increase in �, so sudden that it cannot
be distinguished from the axis on fig. 2, followed by a
slower variation. � does not, in average, reach a maxi-

Figure 2: Hashed zone (the darker the larger � ) one
r.m.s. deviation on each side of average curve for the
3 sample sizes indicated (series A). Inset : its average
width over the �� interval, versus ��

	
� .
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mum in the investigated �� range. ‘Volumetric’ strains
also vary similarly, with a different slope and an even
shorter initial contraction interval.

3.3 Role of parameters 
 , �, �.
The quasistatic stress-strain curve should be the same
for SRC and SIC biaxial compressions, independent
on 
 and on � if it is small enough. To check this, five
samples of series B were submitted to SRC tests with
� � ���� and 
 � �, � � ���� and 
 � �, � � ����

and 
 � �, and to SIC ones with Æ� � ����� . Av-
erage curves for � versus �� (fig. 3) and �� versus ��
(fig. 4) for those 4 sets of simulations are displayed
(and standard deviations levels indicated as on fig. 2).
Obviously, the value of 
 does not have any apprecia-
ble influence on the rheological curve. Intergranular
friction is the dominating dissipation mechanism, and
it can be checked that the differences between stresses
evaluated with and without viscous forces differ by
negligible amounts for all SRC tests. However, results
are affected by the reduced rate �, or the choice of
an SIC procedure. The slower the compression – or,
equivalently, according to � � ��

�
��� , the lighter

the grains or the higher the confining pressure – the
smaller the deviator values and the dilatancy for a
given ‘axial’ strain. SIC tests, as one waits for equi-
librium states, are here the slowest, and yield curves
that can be likened to an extropolation of SRC ones
to � � �. (The occurrence of slightly decreasing �
values in tests at gradually increasing deviator might
seem surprising, but is due to the use of real Cauchy

Figure 3: Average � versus �� for conditions indicated.
Left inset: detail of one curve with r.m.s. deviations,
small ��. Right inset: averages and r.m.s. deviations
for � � ����, � � ���� and SIC tests.

Figure 4: Same as fig. 3 for �� vs. ��, standard devia-
tions shown except for uppermost (� � ����) curve.

stresses to draw the curve, while stresses defined in
terms of initial cell dimensions are used in the calcu-
lations). The effects of the stiffness parameter � are il-
lustrated on fig. 5. It is most apparent in the initial rise
of �, which is the faster for higher �, and the small-
strain contractant régime (see inset), which develops
with softer contacts. For smaller �, the packing ap-
pears indeed to be softer. The curves at larger strains
display no conspicuous difference between � � ���

and � � ���, although the softest grains, � � ��� ap-
pear to withstand a somewhat higher deviator stress.
The dilatancy - slope of ��� versus �� - is not af-
fected. The time scale for stress fluctuation during
monotonous tests at a given strain rate is a strongly
decreasing function of �, hence the smoother curves
on fig. 5 for softer contacts. The effects of the parame-
ters on rheological curves are related to some changes
in the internal states of the system undergoing com-
pression. The effect of � is related to the greater dis-
tance to equilibrium of systems under higher strain
rate. Characteristic quantities are the average kinetic
energy per particle, ��, and the quadratic average of
the net force on a particle, ��. Those quantities tend
to slowly increase with �� during the test, but typi-
cal values for �� � ���� can be cited. As for SIC
tests, one only records equilibrium positions, ensur-
ing �� � ���� and �� � ����. The coordination
number � and the proportion of sliding contacts ��

vary quickly between before �� � ���� and remain
essentially constant afterwards (����, on average, for
� � ��� and � � ����, but ���� for � � ����). Tests
with the highest � values ���� are, logically, the far-
thest from equilibrium (�� � ��� ����, and �� � ����,
while �� � � ���	 and �� � ���� for � � ����).
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The change of � makes a significantly larger differ-
ence from ��� to ��� than from ��� to ���. Unlike
�� and ��, which are essentially sensitive to �, quan-
tities involving the number or the status of the con-
tacts (such as ��) are sensitive to both parameters.
In SIC tests intermediate configurations (� � ���),
� decreases to about ����, which is consistent with
the dependence on �. Those configurations, remark-
ably, do not have any sliding contact: on approaching
equilibrium, all contact forces leave the edge of the
Coulomb cone. Upon resuming a SRC motion, very
small displacements can mobilize friction again on a
fraction �� (typically ��
, higher for the highest �)
of the contacts.

4 DIFFERENT ORIGINS OF STRAIN

One striking aspect of the rheological curves is the ex-
istence of two different régimes. At small ��, close to
the initial isotropic state, curves are quite smooth and
reproducible, sample to sample fluctuations are very
small (fig. 3), SIC and SRC tests (whatever � � ����)
are in perfect agreement (figs. 3 and 4), and � strongly
affects the results (fig. 5). Coordination numbers and
friction mobilization change fast from initial values
(table 1) to the roughly constant ones given in para-
graph 3.3. At larger strains, the system is sensitive to
the strain rate, much more than to the stiffness pa-
rameter. Fluctuations are considerably larger, and the
stepwise increase of �, as one records the ensuing se-
quence of equilibria, results in a staircase-shaped �
versus �� curve, as on fig. 6. � increments in those
SIC simulations are very small, ����� , so that nearly
vertical segments on those plots correspond to many
different equilibrium configurations, each very close

Figure 5: Results for one B-sample with 3 different
stiffness values, � (main plot) and �� (inset) vs. ��.

Figure 6: Two SIC � vs. �� curves. Inset : initial
strictly quasistatic régime, blown-up � scales. Results
on one sample are identical with both methods.

to the previous one. The slope of those steep parts
of the curve is close to that of the initial, stiff rise
of �, confused with the axis on the main plot in the
figure, and visible in the blown-up inset. Large hori-
zontal segments are due to motions between more dis-
tant configurations. The origin of those two different
regimes is clarified once it is attempted to find the sys-
tem response to small load increments by purely static
means. Starting from an equilibrium configuration, it
is possible to regard its contact structure as a given
network of elastoplastic elements, and determine the
displacements leading to the new equilibrium con-
figuration, with a static method which is a discrete
analog of elastoplastic finite element calculations in
continuum mechanics. Such methods are seldom used
(see, however, (Kishino et al. 2001)) in granular sys-
tems because they are more complicated and less ver-
satile than the usual dynamical approaches: a stiffness
matrix has to be rebuilt for each different contact list,
and calculations are limited to the range of stability of
a given contact network. As long as the contact struc-
ture is able to support the load, plastic strains in the
sliding contacts remain contained by elastic strains in
the non-sliding ones, and the static method is able to
determine the sequence of configurations reached on,
e.g., stepwise increasing �. This sequence is made of
a continuous set of equilibrium states, and the sys-
tem evolution is indeed quasistatic : we refer to such
case as the strictly quasistatic régime. We checked,
for series A samples, that static and dynamic calcula-
tions are in perfect agreement in such cases, as shown
on fig. 6.This initial régime is the stability range of
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the isotropic configuration. The strains are then di-
rectly due to contact deformation – such strains will
be termed of type I in the sequel – and are inversely
proportional to �, while results are not sensitive to
� (the static method ignores completely inertia and
physical time). This range should not be regarded as
an elastic domain, as the non-linearity of the curves
on fig. 6 (the elasticity of contacts is linear) is due to
contact losses and also to the gradual mobilization of
friction. On reversing the � increments, steeper slopes
are observed. In the samples of fig. 6, the very steep
parts of the staircase-shaped curves also correspond,
as we checked, to stability intervals of some inter-
mediate equilibrium configuration at higher �. Such
intervals are separated by large strain steps, corre-
sponding to rearrangements of the contact structure.
Those occur when the accumulation of sliding con-
tacts leads to an instability, and the ensuing motion is
arrested by new contacts as interstices between neigh-
bouring grains are closed. The resulting strain incre-
ments are hereafter referred to as type II strains. Their
magnitude is related to the width of interstices be-
tween neighbouring grains. The system evolution, in
that rearrangement régime, is, as shown previously,
more sensitive to dynamical parameter �. Equilibrium
states do not form a continuum in configuration space,
the system has to jump between two successive ones
in a controlled deviator step test, or to flow nearby in
a controlled strain rate test. The evolution can only
be termed quasistatic in a wider sense if the statis-
tical properties of trajectories in configuration space
are independent, for slow enough motions, on dynam-
ical parameters – which can be reasonably expected
from the present study. The initial strictly quasi-static
� � �� interval does not shrink, but appears rather to
approach a finite limit (about �� � ��� here) as the
sample size increases. Stress-strain curves depend on
����� within this range, but, interestingly, �� does
not (Combe 2001). In the rearrangement régime, in
order to approach a smooth curve in the macroscopic
limit (see fig. 2), it is necessary that the sizes of both
the steep and the flat parts of the ‘staircases’ shrink
to zero as the sample size increases. Type I and type
II strains have very different amplitudes in A samples
with � � ��� and � � ����. It might in fact be ex-
pected that this clearcut distinction will get blurred
at smaller � (whence larger type I strains) or larger
� (smaller type II strain increments can close con-
tacts), and that the transition at �� will be fuzzier as
well. Nevertheless, the system properties do strongly
differ for � � �� and � 	 ��, in two important re-
spects. First, the slope of the stress-strain curve re-
lates directly to the elasticity of the contacts in the
type I strain dominated, strictly quasistatic case. The
tangent at the origin on fig. 6 (smaller plot) is the
Young modulus of the packing. Second, the ampli-

Figure 7: ‘Creep tests’, dots on main plot showing
initial and final (equilibrium) states. Effect of resum-
ing compression SRC way shown as thick lines. Inset:
creep tests within strictly quasistatic range.

tude of fluctuations, the distance to mechanical equi-
librium, and the sensitivity to perturbations are much
stronger in the rearrangement (type II strain domi-
nated) régime. This is further illustrated by the fol-
lowing ‘creep experiment’ : in a strain-rate controlled
biaxial compression, at some arbitrary instant, shift to
stress-controlled conditions and keep � constant, until
an equilibrium configuration is reached. Typical re-
sults of such tests are shown on fig. 7. As could be
expected, much larger strain variations are observed
during periods of creep in the rearrangement regime,
as the initial states are farther from equilibrium. One
may also note that, on resuming the constant strain
rate test, the initial part of the curve is very steep,
which is characteristic of a ‘strictly quasistatic’ inter-
val. From an equilibrium state (devoid of sliding con-
tacts), friction has to be mobilized again to produce
the instabilities of the rearrangement régime. The di-
latancy within those creep intervals is similar to the
SRC one.

The ‘creep tests’ reveal different behaviours in the
two deformation regimes in SRC tests. One might
also probe the sensitivity to perturbations of inter-
mediate equilibrium states obtained in SIC tests. We
repeatedly applied on the grains constant external
forces, each force component being randomly chosen
between ��� and �� (�� is a small fraction of �� ).
Such random load increments always tend to produce
strains in the same direction, as illustrated on fig. 8.
Applied when � � ��� within the strictly quasistatic
range, such perturbations entail very small strain in-
crements (hardly visible near the origin of the plot).
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Figure 8: Effect of repeated random load (����� �
��� ����) applied in states shown as big dots on the
stress-strain curve in the inset: increments of �� vs.
increments of �� on blown-up (by ���) scale. Dotted
lines: SIC and SRC dilatancy curves, same sample.

Applied when � � ���� as equilibrium states are
much more unstable, they produce the series of strain
increments plotted as connected dots, which tend to
accumulate proportionnally, hence the nearly straight
line, the slope of which is comparable to the dila-
tancy. Strain increments due to each repeated thus en-
tail some ‘creep’ phenomenon, which this time is due
to small random perturbations.

5 COMPARISONS WITH EXPERIMENTS

In spite of the many differences between the numeri-
cal models and the materials studied in the laboratory,
such as sand, or even glass beads, some features of the
simulation results can be compared in a qualitative or
semi-quantitative way to experimental ones.

First, parameters � and � should be used to ob-
tain robust estimations of orders of magnitude. In 3
dimensions, � should be defined as ������ � in the
case of linear elasticity in the contacts. � measures
the normal elastic deflection in a contact, relatively to
the grain diameter �, due to the typical contact force
���. In a Hertzian contact between spheres of diam-
eter �, it is easy to show that � should be defined as
���� ����, where � is the Young modulus of the grain
material. This gives � � 
��� for glass beads un-
der � � ���Pa. (In 3D simulations, we could check
that, given these definitions, the effect of � on the
coordination number was similar to the 2D case, see
also (Makse et al. 2000)). ‘Real’ materials with Hertz
contacts under � � ���Pa are rather on the rigid side,
but not quite in the rigid limit. Other contact laws

might lead to even smaller stiffness parameters (e.g.,
� � ���� ���� if �� 
 ���, as for cone-shaped as-
perities).

An appropriate 3D definition of � is ��
�

�
	


(
�

�
	


is the time for a grain accelerated from rest by the
typical force ��� to move on distance ���). Substi-
tuting typical values – a fraction of millimetre for �,
������� for �� – this yields � values as small as ����

or ���
. As calculations over � � �
 strain inter-
vals with � � ���� still require several days of com-
puter time with 5000 stiff grains, real time scales of
quasistatic laboratory tests are still beyond the reach
of discrete numerical simulations. The � dependence
of numerical results can however be extrapolated to
smaller values.

Although it is tempting, in view of the results il-
lustrated on fig. 7 to refer to creep experiments (Mat-
sushita et al. 1999; Di Benedetto and Tatsuoka 1997),
as the aspects of the stress-strain curves are quite sim-
ilar in several respects, this difference of time scales
precludes a direct comparison. Moreover, the exper-
imental �-� curves do not depend on strain rate if it
is constant (this corresponds to much smaller � val-
ues than simulations), and the creep deformation is
extremely slow, often logarithmic in time (Di Prisco
and Imposimato 1997). Unlike in the numerical case,
it does not appear to stop as some equilibrium is
reached. It might well be relevant, however, to dis-
cuss such experiments in terms of the sensitivity of
the system to perturbations, which is likely to de-
pend on whether contact networks resist load incre-
ments (strictly quasistatic case) or are prone to insta-
bilities (rearrangement régime). The numerical tests
discussed in connection with fig. 8 suggest a possible
microscopic origin of such slow evolutions over long
times. Although aging and creep phenomena can also
be expected at the level of one contact, numerical sim-
ulations, in which such features are absent, might help
assessing the collective aspects of the response of the
granular packing.

Our simulations can also be likened to experimen-
tal observations about the elastic behaviour of gran-
ular systems, and the conditions in which it can be
measured (Di Benedetto et al. 1999). Recent devel-
opments of precision apparati enabled measurements
of strains as small as ���� or ����. To obtain elas-
tic moduli, small stress cycles are superimposed on a
constant loading, producing cyclic strains on top of a
systematic drift which, on increasing the number of
cycles, gradually slows down and becomes analogous
to the one observed in creep tests. As soon as the ef-
fect of this drift can be neglected during one cycle, its
average slope on a stress-strain plot can be interpreted
as an elastic modulus (there remaining some small
dissipation), and such small strain increment elastic
constants agree with the ones deduced from acoustic
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wave velocities. From our simulations, it transpires
that the incremental stress-strain dependence might
express a genuinely elastic behaviour (supplemented
by some plastic dissipation which vanishes in the limit
of small stress increments) in the strictly quasistatic
régime. Elastic moduli are then related to the stiff-
ness of the contacts. The width of strictly quasistatic
strain intervals are of the order of ���� – �� being their
width in terms of stress ratio. Taking into account that
�� is exceptionally large for the initial small-strain
rǵime if our extremely dense and well coordinated
systems, and the value � � 
��� estimated above for
glass beads, one does obtain the right order of magni-
tude � ���� for the very small strain elastic domain.
Moreover, the procedure by which these small strain
moduli are measured can be interpreted as the prepa-
ration, either left to random perturbations or forced by
cyclic load increments, of a better stabilized state for
which the contact network is able to resist small, but
finite stress increments (just like the stiffly responding
equilibrium states of fig. 7).

6 CONCLUSIONS AND PERSPECTIVES

In spite of their limitations (due to the simplicity of
the contact model, and the practical impossibility to
directly simulate very slow phenomena), the numeri-
cal simulation results presented here enable some in-
vestigation of the microscopic origins of many fea-
tures of experimentally observed behaviours. The def-
inition of reduced dimensionles parameters (� and �)
provides us with a framework in which many exper-
imental and numerical studies can be discussed in
common terms. Despite the small size of numerical
samples, constitutive laws can be approached via sta-
tistical analyses. Most importantly, the distinction be-
tween two different origins of strain and two defor-
mation régimes allows us some interpretations of very
small strain (tangential) elasticity and slow deforma-
tion (creep) under constant load, in terms of the sys-
tem sensitivity to perturbations.

This work should be pursued in three directions.
First, it is desirable to extend the existing approach
to more ‘realistic’ models, so that more quantitative
comparisons with experiments will be possible (our
3D results on spheres – an obvious step in this di-
rection, were not presented here for lack of space).
Secondly, the importance of the initial state and of
the sample preparation procedure calls for systematic
studies (unlike for quasistatic monotonous compres-
sion tests, experimental knowledge is not expressed
as well established laws for such processes). And, fi-
nally, the joint use of dynamic and static methods,
which agree remarkably in strictly quasistatic do-
mains (fig. 6) opens avenues to explore fundamental
issues like elastoplastic contact network stability and
rearrangements in some microscopic detail.
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