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Aiming at characterizing the departure from elasticity in granular materials, we study, by means of
numerical molecular dynamics simulations, the stress response of a layer submitted to increasing
overload forces. Comparing normalized stress profiles to a reference small overload case, ∼ 0.1〈m〉g,
we compute root mean square (RMS) differences, averaged over several independent realizations, as a
function of the overload force. The results indicate two different regimes for these RMS data: an elastic
plateau at small overload values and an increase of the RMS at large forces. This increase is due to small
(and frequent) as well as large (and rare) rearranging events. We show that one can extract from both of
these contributions a crossover value for the overload force, which separates the two regimes.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

During the last years the description of dense granular materi-
als has been matter of debate and progress (see, e.g., [1,2]) both in
the physics and engineering communities. Experiments and sim-
ulations of these systems have shown a rich variety of behaviors,
where elastic, plastic, jamming or glassy features are observed [3–
7]. Some of them concern the characterizations of the elastic-like
response of a granular slab to externally imposed forces [8–10] and
the transition to a hyperbolic-like response when the system size
is sufficiently small [11].

Very recently, some macroscopic descriptions were applied to
relatively small systems (slabs of depth of ten to a hundred grain
diameters) showing that there is a minimal scale on which macro-
scopic concepts can be applied to granular systems [12], and that
a regime of linear response exists [11]. In this work we are inter-
ested in characterizing the limit of the elastic behavior exploring
stress response functions when this linear regime starts to fail –
the departure of elasticity. To this end we specialize on a relatively
simple and quite well studied system, i.e. that of a two-dimen-
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sional rectangular slab comprising polydisperse disks. Gravity is
accounted for and an additional external force (or overload) is ap-
plied to a single particle at the top of the system. We focus in
particular on the calculation of the stress on the floor (which has
been measured in several experiments [8,9]).

In this paper we investigate the departure from elasticity by
testing the linearity of the response at different values of the
overload magnitude. More precisely, comparing the normalized
stress profiles to the reference situation where the applied force is
F0 = 0.1〈m〉g , we compute the Root Mean Square (RMS) difference
as a function of the overload force F . The rest of the paper is or-
ganized as follows. In the next section, we present the numerical
procedure used for preparing the granular packings and comput-
ing the stresses. Our results are discussed in Section 3. Conclusions
and perspectives for further investigations are presented in the last
section.

2. Numerical procedure

Our aim is to perform extensive simulations of assemblies of
grains, in order to provide precise two-dimensional numerical data
of stress response functions. The control of all the parameters of
the simulations, as well as the ability of measuring both micro
(grain size) and macro (system size) quantities, ensure a useful and
interesting feed back to the experiments and the models. The sim-

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
mailto:atman@dppg.cefetmg.br
mailto:claudin@pmmh.espci.fr
mailto:gael.combe@ujf-grenoble.fr
http://dx.doi.org/10.1016/j.cpc.2008.12.017


A.P.F. Atman et al. / Computer Physics Communications 180 (2009) 612–615 613
Table 1
The units used in the simulation. 〈m〉 denotes the mean particle mass, and g is the
gravitational acceleration.

Quantity Normalization Comments

Length L0 = 1 system width
Mass m0 = 1 largest grain mass
Force W0 = 〈m〉Ng = 1 total system weight
Energy E0 = L0〈m〉Ng = 1
Time τ0 = √

L0〈m〉Ng/m0 = 1

ulations are performed using a classical molecular dynamics (MD)
algorithm in three successive stages: preparation, deposition and
overloading that are briefly described in the following.

We consider a grain-by-grain (GG) preparation (for further in-
formation, see [10]) in which a polydisperse set of N grains is
considered, with radii homogeneously distributed between Rmin <

ri < Rmax = 2Rmin, where i = 1, . . . , N is the label of the particles.
We start by putting 2

√
N similar fixed particles on a horizontal

line which will be used as the support for deposition – the bottom
layer – and apply horizontal periodic boundary conditions. These
bottom grains are chosen in such way that the distances between
them are small enough to avoid grain evasion.

Each grain is deposited individually, by choosing a random ini-
tial position and a vanishing initial velocity. The next particle is
deposited after the system reach an equilibrium configuration. The
equilibrium criteria consists in verifying the following tests, which
are applied after each period of 100 MD time steps:

(1) the total kinetic energy is very close to zero, smaller than
some very low threshold (∼10−15);

(2) the residual layer weight, i.e. the sum of all forces on the bot-
tom, subtracted to the sum of the weight of all the grains, is
lower than a minimal tolerance (∼10−10);

(3) the force balance on each particle is lower than some small
number (∼10−7).

As consequence, all particles possess at least two contacts with
their neighbors, ensuring stable mechanical equilibrium. Besides,
the number of gained or lost contacts between particles is zero;
also there are no sliding contacts during these time steps. Once
these criteria are all satisfied (this typically takes several millions
MD time steps and few days of CPU processing in a Xeon 2.4 GHz
station) the deposition is stopped, and the overloading phase can
begin.

The grains interact through elastic and friction forces. They
obey classical Newton motion equations and under molecular dy-
namics rules – velocity Verlet with 3rd predictor–corrector scheme
[13]. The rheology of the contacts is modeled by means of two
springs, with kn and kt for the normal and tangential contact stiff-
ness, respectively, and a damping coefficient gn chosen in order to
get a critical damping in the normal direction. We choose μ = 0.5
for the contact friction (the dynamic and static friction coefficients
are considered identical). This model is similar to the commonly
used model of Cundall and Strack [14]. The time step dt used in
the MD is fixed as dt = ts/50, where ts = √

m0/kn is the charac-
teristic period of oscillation of the normal contact for the grain
with smallest mass in the layer (m0). In order to simplify the sim-
ulations, the values for these parameters are defined considering
normalized quantities – see Table 1. Expressed in these units, we
used kn = 1000, kt = 0.75kn and gn = 30. The typical contact de-
formation close to the bottom is on the order of 0.1% of Rmax, i.e.,
the particles are much softer than real glass beads, but still rather
rigid.

The overload phase consists in the application of a force F to a
single grain of the surface. The applied force is increased linearly
from 0 to F with a force increment of 10−4〈m〉g in each MD step,
and is subsequently kept fixed. The equilibrium criteria are those
described above, except that the sum of the forces at the floor has
to be equal to the weight of all the grains plus the applied force F .
Let us use the label ‘b’ for the static packing before the overload
is applied, and ‘a’ for the packing for which static equilibrium is
reached again after the external force F has been added. The re-
sponse of the system is computed as the difference between the
stress profiles obtained at the ‘a’ and ‘b’ states independently.

The stresses are computed in terms of microscopic quantities.
Under very general considerations, it was shown [15,16] that an
exact expression of the stress tensor σαβ at position �r for a static
assembly of grains (i.e., the kinetic part of the stress is zero; we
consider only the contact stress in the present paper) is given by

σαβ(�r) = 1

2

∑
i, j;i �= j

f i jαri jβ

1∫

0

ds φ[�r −�ri + s�ri j]. (1)

In this expression, Roman indices are particles labels, whereas
Greek ones denote the Cartesian coordinates. �ri j ≡ �ri − �r j , where
�ri is the center of mass of particle i, are the ‘branch vectors’, and
�f i j is the force particle j applies on particle i. φ(�R) is an arbi-
trary coarse graining (CG) function which is normalized, positive
semi-definite with a single peak at �R = �0, and has a typical width
w , the CG length scale. Note that σαβ depends, in general, on the
choice of φ and in particular on the CG scale, However, it has been
checked that, for a range of values d < w < 10d (d is the mean
grain diameter), this dependence is weak, especially after ensem-
ble averaging [12]. Here we have chosen a Gaussian CG function
[17] with a CG width w = 6d, a value which is also small enough
not to be sensitive to the finite thickness of the layer. We show
in Fig. 1 some typical stress response profiles obtained for a single
realization (i.e. no ensemble average over several loads), ranging
over 4 orders of magnitude in the applied force.

The codes were developed in Fortran language. A typical run
for a single layer with 3720 particles, ∼30 overload points and
25 different force magnitudes tested for each point, takes about
20 days of CPU processor in a Xeon 2.4 GHz server and generates
about 400 Mbytes of data to be analyzed.

3. Results and discussion

The linearity test is illustrated in Fig. 1, in which we compare
individual bottom stress rescaled profiles measured of the same
layer in response to loadings with different values of F . For small
values of the extra force, the contact forces are linear in F , so that
the rescaled profiles are indistinguishable. For larger values of F
however, one can clearly observe deviations from linearity.

In order to quantify these deviations from linearity, we calcu-
late the root mean square (RMS) differences of the rescaled pro-
files compared to a small force reference profile, F0 = 0.1〈m〉g .
In each realization, a grain is chosen at the top surface and we
plot the RMS as a function of function of the overload force mag-
nitude, F . This RMS curve starts with a plateau for the smaller
force values. This plateau means that, within fluctuations, the re-
sponse profiles are linear, which corresponds to the elastic regime.
Increasing further the overload force, the RMS value depart from
this plateau. This departure in generally smooth, with, besides,
few rather abrupt changes. Examining such an abrupt change with
smaller force steps, we could check that they really correspond to
sudden jumps, in general associated to the loss or the gain of a
contact involved in a major force chain close to the overloaded
grain.

As we expect the behavior of the RMS curve to be the result of
respectively small and larger contact or grain rearrangements, it is
interesting to consider these two aspects separately. For this pur-
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Fig. 1. Stress response profiles normalized by the vertical distance from overload
point to the layer bottom. Five different values of F are shown, ranging 4 orders
of magnitude for a single realization. Note the remarkable linearity comparing the
stress response profiles.

Fig. 2. Incremental values of the RMS difference to the reference profile F0 =
0.1〈m〉g as a function of the overload force F . All 28 individual realizations com-
puted in this layer are shown – different symbols correspond to independent real-
izations. The dashed line indicates the threshold considered here (0.33, see text).

pose, we compute, for each overload force step, the corresponding
relative increment of the RMS differences defined as

iRMS(F j) = RMS(F j) − RMS(F j−1)

RMS(F j) + RMS(F j−1)
, (2)

where RMS(F j) is the RMS value associated to the overload F j .
This incremental RMS is displayed as a function of F j in Fig. 2
for each single realization in the studied layer. We can see that,
most of the data lie close to the zero–y-axis, which means that the
relative change in the RMS from a value of the overload force to
the next is small. Few points, however, have an iRMS value which
can be large. They correspond to these abrupt changes. Taking a
threshold value (here we chose 0.33, which corresponds to a dou-
bling of the RMS), we can discriminate between these two types.
Once this threshold was reached, the stress response of the respec-
tive sample is no longer considered in the ensemble averaging. In
Fig. 3, we display an example of such RMS curves, averaged over
the 28 different realizations. The elastic plateau is clearly visible
for overload forces up to a crossover overload force Fc 
 30〈m〉g .
Beyond this value, the linearity of the response begins to fail. At
Fig. 3. Ensemble average RMS difference to the reference profile F0 = 0.1〈m〉g as a
function of the overload force F . In this layer, 28 overloads have been computed.
Note the difference in the RMS plot after the iRMS threshold has been considered,
removing the sudden variations in the RMS values. The dashed line corresponds to
the number of accepted realizations – note the different scale in the right axis – i.e.
those which pass this iRMS criterion.

the same time, the number of data points above the iRMS thresh-
old increases, meaning that both small and large rearrangements
start to be important for the same overload amplitude. Impor-
tantly, the value of the threshold is quantitatively relevant for the
large-F regime, but not for the determination of Fc . As already
mentioned, large iRMS values seem to be associated to crucial con-
tact rearrangements in the force network. However, the precise
study of these rearrangements is beyond the scope of the present
paper.

4. Conclusions and perspectives

We have studied the departure from the elastic response of
a granular layer submitted to a localized force. This departure
has been investigated through a test on the linearity of the re-
sponse. We have shown that it can be attributed to both large
and small rearrangements of the packing when the overload in-
creases. We have identified a crossover overload which separates
the elastic and non-elastic regimes. Interestingly in this example,
this crossover value Fc 
 30〈m〉g is on the order of the pressure
force felt by a grain at the bottom without overload – the layer
depth is approximately 25 grain diameters. Further investigation is
needed to explore the effect of the system size on this crossover
force. Attention will also be devoted to the role of the inclination
of the layer with respect to the gravity – we expect Fc to vanish
at the avalanche angle.
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