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Scale Separation in Granular Packings: Stress Plateaus and Fluctuations
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It is demonstrated, by numerical simulations of a 2D assembly of polydisperse disks, that there exists a
range (plateau) of coarse-graining scales for which the stress tensor field in a granular solid is nearly
resolution independent, thereby enabling an ‘‘objective’’ definition of this field. Expectedly, it is not the
mere size of the system but the (related) magnitudes of the gradients that determine the widths of the
plateaus. Ensemble averaging (even over ‘‘small’’ ensembles) extends the widths of the plateaus to
subparticle scales. The fluctuations within the ensemble are studied as well. Both the response to
homogeneous forcing and to an external compressive localized load (and gravity) are studied.
Implications to small solid systems and constitutive relations are briefly discussed.
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Continuum descriptions of matter comprise equations of
motion for appropriate sets of macroscopic fields [1]. It is
helpful (though not required) when these fields or the
constitutive relations do not depend on the averaging scale
within a certain range of scales (larger than microscopic
and smaller than the scales characterizing field gradients);
see, e.g., [2]. These ‘‘plateaus’’ of scales define the macro-
scopic fields and their fluxes in a ‘‘scale independent’’ way.
The corresponding constitutive relations are local (ex-
pressed in terms of gradients of the fields) when scale
separation exists. The Navier-Stokes equations and solid
elasticity are typical examples.

Recent studies render support to the notion of scale
separation in nanoscale solids and granular matter, as their
mechanics lends itself to description by elasticity for a
range of loads [3–10]. The short correlation length of the
contact forces in static granular matter [11] suggests that
such plateaus should indeed exist. In this Letter, we study
the scale dependence of the stress response in polydisperse
granular packings. We show that even in small systems
where stress gradients may be large, stress plateaus can be
identified (though they may be quite narrow in some
cases); expectedly, the widths of the plateaus are related
to the gradients of the stress field. Ensemble averaging
increases these widths. The scale dependence of the fluc-
tuations within the ensemble is studied as well.

The considered model is a two-dimensional (2D) rect-
angular slab in the x-z plane, periodic in the x direction. It
comprises 3600 polydisperse frictional disks, whose radii
are uniformly distributed in the range (Rmin, Rmax �
2Rmin). The aspect ratio is about 7. Gravity acts in the
�ẑ direction. It is prepared by sequentially dropping the
grains from rest at random horizontal positions above the
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top of the system. The floor comprises about 160 non-
touching grains, whose centers are constrained to reside
at z � 0, and whose radii are randomly chosen from the
range (1:2Rmin, Rmax), which ensures that bulk particles
cannot percolate through the floor. Similar systems have
been studied experimentally both in two and three dimen-
sions [3,4,12,13].

The force model used in the simulations is essentially
that of Cundall and Strack [14]: overlapping disks are
coupled by both normal and tangential springs, of respec-
tive stiffnesses, kn � 1:5� 104 hmig

Rmax
and kt � 0:5kn, where

hmi is the mean particle mass and g the gravitational
acceleration. A linear viscous damping force (dashpot)
acts in the normal direction (parallel to the line connecting
the centers of the disks), the damping coefficient chosen to
correspond to critical damping. The tangential forces are
limited by the Coulomb condition, with a coefficient of
(both static and dynamic) friction, � � 0:5. The simula-
tion is run until it reaches a numerically static state [15]. To
this system we apply either a uniform external load (at its
top) or a vertical compressive force acting on one particle
at the top of the system. In the latter case the displacement
gradients are large near the point of application of the force
and decay with distance from this point; the effects of the
local gradients on the widths of the plateaus can thus be
studied in the same system. The external load is linearly
increased from zero to its final value, F0, in a time com-
parable to the typical relaxation time to static equilibrium.
The load is subsequently kept fixed, and the system is
relaxed to a new numerically static state. The system’s
response is linear in the magnitude of the force for loads
not exceeding a few times hmig, as in Ref. [8]. The
response obeys superposition when two external forces
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FIG. 1. Mean response to a force at x � 0, vs CG width, w, for
different ensemble sizes, Ne. The CG function is Gaussian, and
the unit of �zz is F0=l, where l 
 160hdi is the width of the
system; h is the height of the system. Inset: the response to
homogeneous forcing at 45� and 90� to the horizontal.
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are applied, and is reversible to the slow removal of the
force [15]. Below we specialize to the range of loads for
which the response is linear. Findings for single realiza-
tions as well as ‘‘ensemble averages’’ over different real-
izations of the disorder are presented. The results reported
here pertain to the normal stress response of the system (at
the floor), i.e., the difference between the floor stress for
the loaded system and the (near-uniform) floor stress of the
unloaded system.

The stress field, ����r�, at point r, is given (without the
kinetic stress term, which vanishes in the static limit) by
the following exact expression, which is fully compatible
with the general equations of continuum mechanics (for
both static and time dependent states) [6,16–18]:

����r� �
1

2

X
i;j;i�j

fij�rij�
Z 1

0
ds��r� ri � srij�; (1)

where i; j are particle labels, �;� represent Cartesian
components, rij 	 ri � rj, where ri is the center of mass
of particle i, and fij is the force exerted by particle j on
particle i. The coarse-graining (CG) function, ��R�, is a
positive semidefinite normalized function, with a single
maximum at R � 0, and width w (the CG scale). The
sign convention here is that compressive stress is positive.

The validity of the equations of continuum mechanics
(unlike the constitutive relations) is not resolution limited
[with Eq. (1) defining the stress field]; see, e.g., [6,16]. The
actual values of the stress depend on the choice of� andw.
For ‘‘large’’ CG scales the dependence of the stress on the
choice of � is weak for ‘‘reasonable’’ CG functions, such
as [16,19]: ��R� � 1=��w2�H�w� jRj�, where H is the
Heaviside function, and the Gaussian,��r� � 1

�w2 e��jrj=w�
2

(in 2D). Gaussian CG functions yield smoother stress fields
than the Heaviside function, for obvious reasons [15]. The
stress field of Eq. (1) corresponds to the Born-Huang [20]
(or Irving-Kirkwood [21] ) formula in the limit of large CG
scales.

Experimentally [3,4], the normal stress at the floor,
�zz, is given by �zz�x� � �

1
L

P
ifizH�

L
2 � jx� xij�,

where L is the CG length (gauge area in experiments),
fiz is the force acting on the floor particle i and xi is its
position. An identical expression can be obtained from
Eq. (1) by substituting the anisotropic CG function
��~r� � 1

LH�
L
2 � jx� xij���z� [15].

As a theoretical basis for defining ensembles for granu-
lar solids is lacking, one usually averages (with equal
weights) the desired entities over randomly generated real-
izations, subject to some constraints, such as the construc-
tion protocol of the system. It is not a priori clear [22]
whether these averages indeed yield typical values. In
order to study the effect of ensemble averaging, we pre-
pared 10 different samples; this rather small ensemble was
extended as follows. To each of the realizations we applied
an external load F0 � 7hmig to different particles at the
16800
top of the slab. We verified that the corresponding fluctua-
tions were nearly statistically independent when these
positions were separated by distances exceeding about
half the height of the system. The CG response profiles
were therefore ensemble averaged over ensembles of ef-
fective sizes, Ne, up to Ne � 110. The x coordinate of the
load defines x � 0.

The inset of Fig. 1 presents the response of the system to
uniform forcing at its top both for the case of vertical forces
(uniaxial vertical stress) and oblique ones (a combination
of vertical stress and horizontal shear). Forces of magni-
tude 7hmig=nt were applied to each of the nt 
 150 parti-
cles whose centers resided at z � 20:5hdi, where hdi
denotes the average diameter of a particle. The response
is quite flat for w � hdi even for a single realization, and
flatter for an average over five realizations. In contrast, in
the inhomogeneous case (with a localized force at x � 0),
we obtain narrower plateaus. Figure 1 depicts the response
at x � 0 in this case. Even for a single realization, one
observes a (narrow) plateau. The deviations from the pla-
teau at large values of w are due to the large-scale (macro-
scopic) spatial dependence of the average stress. For the
case studied here, the mean response function (for w of a
few particle diameters and Ne � 110; see Fig. 4) can be
well fitted by a Gaussian of half-width, W ’ 17:5hdi (ex-
cept at the tail), hence (ignoring small scale fluctuations)
the convolution involved in the coarse-graining process
yields, for w� d, a (approximate) Gaussian of half-width�������������������
W2 � w2
p

, in agreement with the results obtained by
direct coarse graining.

The presence of a plateau suggests that the stress is
‘‘locally homogeneous;’’ however, since the forcing is
macroscopically inhomogeneous, the width of the plateau
depends on position, as shown in Fig. 2. In order to study
this dependence in more detail, we define the plateau
1-2
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FIG. 2. Mean response at different x coordinates at the floor vs
CG width, w, for an ensemble size Ne � 110. The thickened
parts correspond to the plateaus; � marks w0.
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FIG. 4. Mean response and its standard deviation vs jxj at the
floor, for several values of the CG width w, for an ensemble size
Ne � 110. Inset: relative standard deviation of the response at
x � 0, vs w, for different Ne.
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width �w as the largest connected range of w for which
j��zz�w�=�zz�w0�� � 1j< �, for a given tolerance � (maxi-
mizing �w over 0<w0 < 5hdi). Figure 3 presents the
dependence of �w on x for � � 5% and Ne � 110. The
plateau widths can be rather small (a few particle diame-
ters) in parts of the system, as may be expected considering
the inhomogeneity of the response in this relatively small
system. The dependence of �w on x is related to the shape
of the macroscopic response. One expects �w to be
smaller where the response is less homogeneous. In
Fig. 3 we plot the first and second derivatives of the
response (calculated forw � 4hdi). In general, �w appears
to be anticorrelated with the second derivative of the
response, rather than the first derivative. The reason seems
to be that the average over a symmetric segment around x,
of a profile which is locally linear (on average) and whose
fluctuations are essentially uncorrelated, yields basically
the same (coarse-grained) value at x almost irrespective of
the width of the segment, w. It is easy to verify that the size

of the plateau should be given by ��w�2j @
2�zz
@x2 j 
 �j�zzj;

the peak in Fig. 3 corresponds to a region where @2�zz
@x2

vanishes and there the plateau size depends on the next
even (fourth) derivative of �zz.

The dependence of �w on Ne for several values of x is
shown in the inset of Fig. 3. As expected, ensemble aver-
aging smoothes small scale fluctuations: while for Ne � 1
the plateaus start atw * hdi (see also Fig. 1), they probably
extend down to w � 0 as Ne ! 1. Note that not only the
forces fluctuate among the realizations, but also the particle
positions. The plateau widths seem to practically saturate
already for Ne 
 50, suggesting that the fluctuations in the
ensemble are not strong.

The wide distribution of contact forces in granular ma-
terials [11,23] may suggest the existence of strong stress
fluctuations. However, since the force correlations are
rather short ranged [11], their fluctuations are well
smoothed by spatial averaging. Denote the standard devia-
16800
tion (in the ensemble) of the response by ��. The relative
standard deviation, ��zz=�zz, as a function of the CG scale
w, for different ensemble sizes, is presented in the inset of
Fig. 4. With increasing Ne, ��zz=�zz seems to saturate to a
well-defined limit (for a given w). The relative stress
fluctuations at fixed x seem to approximately satisfy
��zz=�zz / w�2=3. While an explanation of this possible
‘‘scaling’’ is still lacking, we believe it is quite surprising
that the fluctuations at small values of w (clearly related to
the force and particle position fluctuations) share the same
(approximate) scaling with those at large values of w,
which sample large-scale fluctuations and the spatial varia-
tion of the stress.

The dependence of the stress field (for w within the
plateau) and its fluctuations on the absolute horizontal
1-3



PRL 96, 168001 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
28 APRIL 2006
distance from the load, jxj, is presented in Fig. 4. The
fluctuations (��) seem to decay nearly exponentially
with x, at least not too far from x � 0. The decay length
depends on w. However, the mean stress decays faster than
exponentially at large x (basically as a Gaussian), in con-
formity with the linear elastic solution for this case; the
sharp drop near jxj � 50hdi is due to the fact that the
response becomes negative over a small interval, as ex-
pected from linear elasticity [4,19]. A similar study of a
Lennard-Jones glass in the linear response regime, with a
localized force applied in the interior (rather than the
boundary) is presented in Fig. 7 of [7] for 2D and Fig. 8
of [10] for 3D systems (the dependence on w is not
discussed in [7,10] ). In our case the mean stress (calcu-
lated at the boundary) decays faster than exponentially,
while in [7,10] the stress is calculated in the bulk, and
decays algebraically (both results are consistent with linear
elasticity). This renders the relative fluctuations, in our
case, non-negligible at large distances, as opposed to the
decay with distance found in [7,10]. Our findings suggest
that this decay only characterizes intermediate distances
(or possibly a wall effect), whereas asymptotically the
relative standard deviation is finite (see Fig. 4).

In summary, our findings indicate that the magnitudes of
the local gradients of the macroscopic fields (stress in the
above case) determine the widths of the plateaus. Although
large gradients are expected in nonuniformly forced small
systems, the size of the system is not the main factor that
limits these widths. The mere existence of the plateaus
(which can be as small as 3–5 particle diameters) suggests
that continuum theories may be valid for granular and
mesoscopic solid systems, but one may need to go beyond
simple linear descriptions. The saturation of the results for
small ensembles (e.g., 40–50 realizations) due to the short
range of force correlations suggests that appropriate con-
stitutive relations can be derived for such systems.
Although this Letter is restricted to the linear response
regime, we believe that the plateaus will continue to exist
even near fluidization (they do exist in the fluid regime),
hence, the above approach should be relevant to a rather
large range of loads.
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