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Abstract
In this paper, we present a multi-scale model that combines the finite element
method (FEM) and the discrete element method (DEM) to study the behaviour
of cemented granular materials (CGM) at both the sample (macroscopic) and
particle (microscopic) scales, taking into account inter- and intra-granular crack-
ing. At the microscopic scale, the material is made up of Volume Elements (VE)
composed of particles. Their mechanical behaviour is modelled by the DEM. In
the VEs, we find circular grains (single particles) and meso-grains; the meso-
grains being made up of clusters of particles linked by strong cohesive bonds.
All particles interact via normal/tangential contact and rolling resistance laws
with cohesive bonds. At the macroscopic scale, the sample is modelled using
the FEM. A VE is assigned to each Gauss point of the mesh; the mechanical
response of the VE is used to numerically derive the constitutive response of the
material to the strain increment exerted at each point. In the models reported in
this paper, localised failures in shear bandmode are observed at themacroscopic
scale. By performing amicroscopic analysis, the results show that the occurrence
and development of shear bands give rise locally to a strong evolution of micro-
scopic characteristics such as void ratio, number of contacts (total and debond-
ing contacts), and remarkably by inter- and intra-granular cracking in the case of
meso-grains. Furthermore, the stress and strain tensors non-coaxiality is clearly
demonstrated inside the shear band, but almost negligible outside.

KEYWORDS
cemented granular materials, inter-intra-granular cracking, micromechanical analysis, multi-
scale FEM×DEM, numerical modelling, shear bands

1 INTRODUCTION

Cemented granular materials (CGM) are of great interest in geomechanics, geoengineering, and civil engineering appli-
cations. Typical examples of CGM are concrete, soil-cementmixing, sedimentary rocks,1,2 even bio-cemented sands.3 This
class of materials has been subjected to numerous theoretical, numerical, and experimental research for a long while.4–11
In the numerical modelling context, CGM’s behaviour could be approached at macro- or micro-scale by either contin-
uum or discrete modelling.6,9,12 However, each method has its limitations. Continuum modelling (using Finite Element
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Method [FEM]) by formulating analytically constitutive models can reproduce the overall behaviour of CGM but meet
difficulty in assessing the origin of these macroscopic responses which come from microscopic, that is, the grain scale.
On the other hand, it does not seem feasible to model real boundary value problems (BVP) with trillions of particles by
discrete modelling (using Discrete Element Method [DEM]).
Bridging the gap between micromechanical studies and continuum approaches at the macro-scale is one of the emer-

gent directions in geomechanics. Among them, since the last decade, true multi-scale modelling by numerical homogeni-
sation method has been developed, named FEM×DEM modelling.13–19 In this framework, the macro-micro gap is filled
by sharing information from the discrete description (by DEM) to the continuum description (by FEM). This innova-
tive approach allows us to model the real scale engineering problem by taking into account the real grain-size at the
micro-scale, thus capturing the mechanisms at play across the scales in the simulation of the macro-scale response. The
fundamental principle of FEM×DEM approach is to use a Finite Element Model at the macroscopic level to solve real-
scale BVP while a Discrete Element Model is used at the microscopic level to describe the real-scale grain-size. The recent
FEM×DEM integrated approach has allowed important advances in modelling of failure in cemented geomaterials that
take into account micro-structural evolutions and establish the link between behaviours at different scales, leading to the
physics that govern material behaviour to be studied at the pertinent scales.
Damage of CGM can be observed at many scales including, engineering scale, laboratory scale, or microscale such as

inter-/intragranular cracking. Moreover, failure in CGM is often localised into shear or compaction bands.1,7,20,21 Signif-
icant alteration to mechanical properties can arise with such damage, which can have important implications for the
stability and viability of engineering structures. As above discussed, CGM are certainly not homogeneous. Macroscopic
behaviour of CGMstrongly depends on their nature. Loading and deformation lead to property changes and heterogeneity.
Hence it is evident that the microscopic evolution leads to the possible failure of specimens.16,22,23 However, such effects
are not fully understood and are often neglected in modelling.
Failure by strain localisation is really a multi-scale process in which the macro observation is originated from the con-

centration of micro-mechanisms at smaller scales.24,25 Such phenomenon requires multiple scales analysis and bridging
between them.17,26–29 It is well known that the strain localisation development in CGM can be considered to be due to the
development of microcrack (often classified in inter- and intra-granular cracking of cemented grains) at microscale.1,23
Several experimental studies1,20,30 show that strain localisation is associated with grain crushing and huge modification
in microstructure and micro-properties.
From a micromechanical standpoint, consideration of damage phenomena at the scale of the grains, that is, inter- and

intra-granular cracking, requires multi-scale approach. Despite the recent development of multi-scale approaches men-
tioned above, this problem has been really tackled only at the grain-scale by Discrete Element Modelling,9,31–34 without
bridging to the macro-scale. Modelling such effects at the grain scale and bridging to the continuum macro scale is still
an open question.
Much progress has been made in the FEM×DEM modelling in recent years, in both methodology enhancement

and mechanical investigation of granular material/structure: proposing higher-order model and mesh dependency
regularization,17,35,36 3Dmacro-micro model development17,37–39; studying the model performance and advanced comput-
ing scheme17,19,39,40; investigating the anisotropy origin/behaviour41–43; and application to engineering problems.41,44–46
However, regarding the particle interaction, most of these later works considered the particles interactions as purely fric-
tional or simple cohesive-frictional law and ignored rolling resistance effect and/or rolling resistance strength, which is
not accurately appropriated for CGM. A fully micromechanical model incorporated with normal/tangential and rolling
resistance bond is therefore required. Besides, the relationship of macro and micro features in a FEM×DEM multiscale
simulation has not been fully studied.More specifically, the relationship between void ratio and the formation and growth
of shear bands as recognized in experiments has not been studied in a macro-micro’s point of view. The impact of inter-
and intra-granular cracking on strain localisation has not been numerically bridged from micro to macro description.
Moreover, while coaxiality of the strain and stress tensors is a common assumption of many analytical constitutive laws, it
is not observed experimentally.47,48 With its numerically homogenised constitutive (DEM) law, the FEM×DEM approach
allows non-coaxiality to emerge naturally. Also, the evolution of the non-coaxiality angle inside and outside the shear
band can be studied and can be given more attention with the FEM×DEM modelling. The objective of this paper is to
answer the above questions in the light of the FEM×DEMmulti-scale approach.
To this end, a multi-scale model was developed to assess the behaviour of CGM at both macro- andmicro-scales, taking

into account inter- and intra-granular cracking. The FEM and DEM are integrated into a unified fashion by numerical
homogenisation approach. Thanks to the multi-scale framework, we tend to study the pertinent mechanisms of deforma-
tion (such as void ratio evolution, non-coaxiality, micro-cracking) at the micro-scale and clarify how they evolve during
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F IGURE 1 FEM×DEMmulti-scale modelling: a transition from macro-to micro-scale

a loading process leading to failure. In particular, we aim at capturing the link between microscopic properties changes,
and macro-strain localisation initiation and development. Hence the micromechanics features that lead to macro-failure
will be assessed and analysed at pertinent scales.
The remainder of this paper is set out as follows: Section 2 presents a multi-scale FEM×DEMmodel for CGM. Section 3

provides numerical results, along with discussions. Section 4 concentrates on the evolution of microscopic properties that
leads to macro-failure. Section 5 points out some conclusions and remarks.

2 FEM×DEMMODEL FOR CEMENTED GRANULARMATERIALS

2.1 Summary of FEM×DEM homogenisation coupling principle

The principle of FEM×DEMmethod which combines the FEM and the DEM is illustrated in Figure 1.
The BVP is discretized into finite elements. At each Gauss point of the finite elements, a granular assembly (Volume

Element [VE]) is assigned. From the deformation gradient tensor assigned to eachGauss point, the associated stress tensor
is determined through DEM simulations instead of classical mathematical constitutive equations. The global stiffness
matrix of the macroscopic problem is formulated by assembling the element stiffness matrices, to solve incrementally
the non-linear finite element problem. The above cycle is repeated for every iteration of the Newton-Raphson iterative
method, until satisfying the convergence condition for the current loading step and starting the next one.
In the non-linear analysis by FEM method, the process of solving the non-linear equations system using the Newton-

Raphson strategy imposes to determine the Consistent Tangent Operator (CTO) associated with the constitutive response
of the material to the strain increment imposed locally. This operator may be derived analytically for simple constitu-
tive laws. However, for advanced constitutive law such as the one in the FEM×DEM method, this operator requires a
determination by numerical calculation.15,16,49 The definition of the CTO is as follows:

𝐶𝑖𝑗𝑘𝑙 =
𝜕𝜎𝑖𝑗

𝜕𝐹𝑘𝑙
(1)

For a given increment of deformation gradient 𝛿𝐹𝑘𝑙, the stress at the end of the increment is calculated, denoted
𝜎𝑖𝑗(𝛿𝐹𝑘𝑙). Next, perturbation calculations of displacement gradients are considered, which implies in 2D four calcula-
tions in applying 𝛿𝐹𝑘𝑙 + 𝜀 ⋅ Δ𝑘𝑙

𝑚𝑛, where the scalar 𝜀 is a small value of perturbation and Δ𝑘𝑙 is a second-order tensor whose
components are defined by:

Δ𝑘𝑙
𝑚𝑛 = 𝛿𝑚𝑘 ⋅ 𝛿𝑛𝑙 (2)
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where 𝛿𝑚𝑘 is the Kronecker symbol,

{
𝛿mk = 1 if𝑚 = 𝑘

𝛿mk = 0 if𝑚 ≠ 𝑘
.

The CTO is then determined by means of stress obtained through perturbation calculations as follows:

𝐶𝑖𝑗𝑘𝑙 =
𝜎𝑖𝑗

(
𝛿𝐹𝑘𝑙 + 𝜀 ⋅ Δ𝑘𝑙

𝑚𝑛

)
− 𝜎𝑖𝑗 (𝛿𝐹𝑘𝑙)

𝜀
(3)

It can be noted that Equation (3) required five DEM-computations in 2D models and ten DEM-computations in 3D
models. When using the DEM-based model to define an equivalent constitutive law on a VE with a limited number of
particles, a very common problem to be faced is the scattering of DEM responses for the tiny changes in the strain path
imposed by the perturbations 𝜀 ⋅ Δ𝑘𝑙

𝑚𝑛. This comes from the dynamic feature of DEM and induces some non-representative
values of CTO components, resulting in turn to non-convergence of the Newton-Raphson process, particularly when the
material has entered into the stress-softening regime.
To overcome this difficulty, various solutions have been proposed in recent studies.16,17,40,50 Desrues et al.17 classified

these suggestions into three families, including Perturbation based operators, Kruyt operators, and Elastic operators. A
comprehensive comparison of these alternative operators can be found in the references.17,40 In this study, the method
proposed in Nguyen et al.,16 based on perturbation calculation is used. While the specified CTO is derived from the per-
turbation technique defined by Equation (3), an Auxiliary Elastic Operator (AEO) can be defined as the average CTO
obtained in the strain hardening regime of the material’s behaviour. In the pre-peak regime, we use CTO for Newton-
Raphson method but when entering the peak and post-peak regime, the AEO operator is used and kept constant dur-
ing the sequel of the computations. In this case, the iterative resolution process for the macroscopic problem enters in
the broad range of quasi-Newton methods. Force and displacement conditions are used as convergence criteria in the
Newton-Raphson method. The ratio FNORM/RNORM is used for the force condition, where FNORM and RNORM are
respectively the norm of the nodal out-of-balance forces and the norm of the nodal reaction forces (forces on the fixed
Degrees of Freedom); as for displacements, we use the ratio UNORM/DNORM, where UNORM is the norm of nodal dis-
placements between current and previous iteration, while DNORM is the norm of nodal displacements between current
iteration and beginning of the current step.

2.2 Micromechanical model for CGM

Unlikely cohesionless granularmaterial, the physics of CGM leads to the introduction of bonds between grains; the cement
is modelled in the inter-particle contact law as bonds welding the particles together. Microscopically, a cemented contact
can resist normal and tangential forces as well as torque.
The following section presents a 2D bonded contact model for idealised granular media made up of discs, incorporat-

ing rolling resistance. This contact model consists of normal/tangential/rolling bond strengths that resist normal force,
shear force, and moment, respectively. The bonded contact model proposed below is classified as an irreversible type,
which means that the bond cannot recover any strength once broken. When the contact force is less than its strength,
characterised below by a contact failure criterion, the cemented bond remains intact. When the contact failure cri-
terion is satisfied, the bond is broken. The contact then behaves as an uncemented frictional contact with a rolling
resistance.51–54

2.2.1 Unbonded interaction contact model

We first describe the model of interaction for purely frictional particles, not cemented, that is, without cohesion. We
consider a pair of 2D circular particles with radii 𝑟𝑖 and 𝑟𝑗 which are in contact as shown in Figure 2. Themicromechanical
models described by many authors16,17,19,55–57 assumed the contact to be reduced into a single point and do not consider
resistance to rolling. As a consequence, an unrealistic rolling without sliding phenomenon is often observed for perfectly
circular 2D grains. To avoid this, a rolling resistance can be introduced in the contact. This is done by considering that
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F IGURE 2 A schematic representation of the contact model: interaction force between a couple of grains 𝑖 and 𝑗, composed of normal
(𝑓𝑛), tangential (𝑓𝑡) forces and moment (𝑀) by rolling resistance effect

the contact is not punctual anymore: the contact between particle occurs through an area, that is, a length in a 2D model
(Figure 2).
The rheological model of the contact can be summed up as follows:

(i) a normal contact force𝑓𝑛. The elastic force 𝑓𝑛 is proportional to the particles overlap 𝛿. It is supposed to be small
compared to grain size.

𝑓𝑛 = −𝑘𝑛 ⋅ 𝛿 (4)

where 𝑘𝑛 is the normal stiffness of the contact and 𝛿 < 0 when contact occurs.
(ii) a tangential contact force𝑓𝑡. The total tangential force results from a sum of small increments of tangential elastic

force Δ𝑓𝑡

Δ 𝑓𝑡 = −𝑘𝑡 ⋅ 𝛿𝑢𝑡 (5)

where 𝑘𝑡 is the tangential stiffness and 𝛿𝑢𝑡 is an increment of tangential relative displacement.
For a current time step Δ𝑇, the total tangential force at time 𝑇 + Δ𝑇 is:

𝑓𝑇+Δ𝑇𝑡 = 𝑓𝑇𝑡 + Δ𝑓Δ𝑇𝑡 (6)

The tangential force is limited by the Coulomb condition, which implies52:

|𝑓𝑡| ≤ 𝜇 ⋅ 𝑓𝑛 (7)

The rheological model used to compute the tangential force is thus an incremental elastoplastic law.
(iii) a rolling resistance𝑀. Thanks to rolling resistance, the contacts are allowed to transmit to grains a moment𝑀 that

opposes to rolling. As for the tangential force, the total rolling resistance results from an accumulation of small
increment of elastic moment Δ𝑀,

Δ𝑀 = −𝑘𝑟 ⋅ 𝛿𝜃𝑟 (8)

where 𝑘𝑟 is the rotational stiffness and 𝛿𝜃𝑟 is an increment of the relative rotation of the two grains in contact.

For a current time step Δ𝑇, the total tangential force at time 𝑇 + Δ𝑇 is:

𝑀𝑇+Δ𝑇 = 𝑀𝑇 + Δ𝑀Δ𝑇 (9)
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F IGURE 3 Contact failure criterion displayed as surface envelopes in plans (𝑓𝑛, 𝑓𝑡) and (𝑓𝑛,𝑀). 𝑓𝑛0, 𝑓𝑡0, and𝑀0 represent the tensile,
shear and rolling strength of cemented bonds

This moment is limited by a condition similar to the Coulomb friction:

|𝑀| ≤ 𝜇𝑟 ⋅ 𝑓𝑛 (10)

where 𝜇𝑟 is the rolling friction coefficient.51 It has the dimension of a length. As suggested by,53,58𝑘𝑟 and 𝜇𝑟 can be defined
by:

𝑘𝑟 = 𝑘𝑛 ⋅ 𝑙2 (11)

𝜇𝑟 = 𝜇 ⋅ 𝑙 (12)

where 𝑙 is the contact length between the two grains; this length represents an elastic deflection of contact. 𝑙 is defined by
𝑙 = 10−1 ⋅ 𝑎̄, where 𝑎̄ is the mean diameter of granular assembly.

2.2.2 Bonded interaction contact model for CGM—Failure criterion

For CGM, a cohesion has to be added between particles in contact. To be representative of a cement, this cohesionmust act
on the three relative motions of the contact: normal displacement, tangential displacement, and relative rotation. Hence,
we need to introduce three cohesions: a normal cohesion (𝑓𝑛0), a tangential cohesion (𝑓𝑡0), and a rotational cohesion
(𝑀0).
These three parameters are gathered together into a unique failure criterion that states if the contact is broken. Once

broken, it becomes non-cohesive frictional contact with rolling resistance. The failure criterion is a yield surface in the
space of the normal force 𝑓𝑛, the tangential force 𝑓𝑡 and the moment𝑀 transmitted by the rolling resistance. The failure
occurs on the surface 𝜍 = 0 whereas the intergranular cohesion is maintained inside 𝜍 < 0. The shape of the failure
surface can be tuned according to the criterion exponent coefficients 𝜆.41,59

𝜍 =
𝑓𝑛
𝑓𝑛0

+

(
𝑓𝑡
𝑓𝑡0

)𝜆

+

(
𝑀

𝑀0

)𝜆

− 1 (13)

Figure 3 shows the criterion shape in the 2D plane (𝑓𝑛, 𝑓𝑡) and (𝑓𝑛,𝑀) for various values of 𝜆. For 𝜆 = 1, a linear
surface is obtained, and it corresponds to the classical Coulomb criterion with cohesion. In (𝑓𝑛, 𝑓𝑡) plan, the results of
Delenne et al.60 indicate a parabolic form, equivalent to 𝜆 = 2, while the formulation given in Jiang et al.61 is more or
less similar to the case with 𝜆 = 5. In (𝑓𝑛,𝑀) plan, the best fit for61 is 𝜆 ≈ 3, while60 takes the factor of 𝜆 = 2, as in
(𝑓𝑛, 𝑓𝑡) plan. These surfaces pass across the horizontal and vertical axis at the locations corresponding to tensile strength
𝑓𝑛0, shear strength 𝑓𝑡0 and rolling resistance strength𝑀0. When the criterion is satisfied, the cemented bond is broken,
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TABLE 1 Micromechanical model parameters

Parameters Value
Stiffness level 𝑘𝑛∕𝜎3 1000
Stiffness ratio 𝑘𝑛∕𝑘𝑡 1
Strength ratio 𝑓𝑛0∕𝑓𝑡0 1
Intergranular coefficient 𝜇 0.5
Contact length 𝑙 10−1 ⋅ 𝑎̄

Failure criterion parameter 𝜆 2

in an irreversible manner, that is, if a lost contact is recovered between the two same grains during the modelling, the
recovered contact remains a frictional contact with rolling resistance but without cohesion.
The strength ratios 𝑓𝑡0∕𝑓𝑛0 and 𝑀0∕𝑓𝑛0 are known to depend on the type of cemented materials.59,62 In the present

research, the tensile, shear and moment strengths are evaluated, as suggested by Gilabert et al.,58 by:

𝑓𝑛0 = −𝑝∗ ⋅ (𝑎̄ ⋅ 𝜎3) (14)

𝑓𝑡0 = 𝛼 ⋅ 𝑓𝑛0 (15)

𝑀0 = 𝜇𝑟 ⋅ 𝑓𝑛0 (16)

where 𝑝∗ is a dimensionless parameter that rules the importance of the normal cohesion 𝑓𝑛0 with respect to the average
normal compression contact force (𝑎̄ ⋅ 𝜎3) between particles, where 𝜎3 is the average pressure exerted on the grain assem-
bly and 𝛼 is the ratio between the shear and tensile strength. In the case of biaxial loading, as will be discussed later, 𝜎3
is the confining pressure (a force divided by a length for the 2D case) which is kept constant during the simulations. In
this study, micromechanical model parameters were chosen based on numerical efficiency as suggested in the previous
works.16,58,63,64 These DEM parameters used are summed up in the Table 1.

3 MODELLING BVPS

3.1 Model set-up and numerical parameters

To demonstrate the capabilities of FEM×DEM multi-scale model in reproducing the behaviour of CGM, simulations of
biaxial tests were performed on a sample with a length-to-width ratio of two.
Concerning the VEs, we used the periodic boundary conditions (PBC). The use of a periodic cell allows mechanical

responses to be predicted without interaction with rigid boundaries that necessarily imply geometrical constrains. Fur-
thermore, PBC are observed to produce satisfactorily homogeneous, isotropic responses (for isotropic stresses), and the
state of static equilibrium.65–67 The VEs were prepared in a simple manner. Grains were first placed in a periodic box.
Then, the intergranular coefficient of friction was set to 𝜇 = 0.0 and an isotropic compression (without cohesion) was
performed. Intergranular bonds are assigned once the isotropic compression completed and the second isotropic com-
pression with cohesion was conducted.
At the macro scale (the FEM BVP), the biaxial loading was carried out by a displacement-controlled loading while

a constant confining pressure was maintained on the left and right boundaries 𝜎3 = 𝑐𝑜𝑛𝑠𝑡. The BVP are described in
Figure 4.
The sample low-end was modelled as perfectly smooth to eliminate friction between the lower surface and the sample.

The macro-domain (FEM-domain) was discretized by a structural mesh of 5 × 10 quadratic elements using eight nodes
and four integration points (Gauss points). Identical VEs were initially assigned to all Gauss integration points.
In this numerical campaign, three BVP biaxial simulations were performed, denoted as CGM1, CGM2, and CGM3.

The FEM×DEM condition set-up was similar for three tests except that different VE configurations were used at the
microscopic scale (i.e., DEM). The corresponding three VEs are made of the same number of particles, 400. The particles
are 2D discs of random sizes of relative radii 𝑟𝑚𝑎𝑥∕ 𝑟𝑚𝑖𝑛 = 5∕3 .
The main difference between these VEs lies in the level of cohesion 𝑝∗ used in the contacts to bind the grains. For the

CGM1VE, the cohesion isweak,𝑝∗ = 0.5. For theVECGM3, the cohesion is strong,𝑝∗ = 2.0. For theCGM2VE, these two
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F IGURE 4 FEM×DEM biaxial set-up. The FEMmesh uses 5×10 quadratic elements (eight nodes and four Gauss points). Three cases
named CGM1, CGM2 and CGM3 are considered. Each case use VE initially identical at microscopic level. Force chains are displayed with
colour conventions: 𝑝∗ = 0.5 in blue and 𝑝∗ = 2.0 in red

TABLE 2 VE microscopic properties of initial DEM-based constitutive model

Number of contacts (𝒏𝒄𝒐𝒏𝒕)

VE
Number of
particles (𝒏𝒑𝒂) Total (𝒑∗ = 𝟎.𝟎) (𝒑∗ = 𝟎.𝟓) (𝒑∗ = 𝟐.𝟎)

Void
ratio

Coordination
number (𝒛)
(𝒛 =

𝟐×𝒏𝒄𝒐𝒏𝒕

𝒏𝒑𝒂
)

CGM1 400 837 0 837 – 0.20 4.19
CGM2 822 1 298 523 0.20 4.11
CGM3 840 0 – 840 0.21 4.20

levels of cohesion are used to model a set of fragmentable clusters of grains (𝑝∗ = 2.0) surrounded by individual particles.
To increase the randomness within the cluster of grains, a very few (0, 1, or 2) contact links are allowed to be randomly
presented weak bonds inside each cluster. The bounds between (i) different clusters when they are in touch; (ii) individual
particles and clusters; and (iii) individual particles themselves, is made of a weak cement (𝑝∗ = 0.5) (Figure 4). This kind
of model aims at introducing the nature of CGM and reproducing the inter- and intra-granular failure. Hereafter we will
call the clusters of grains “meso-grains.” Microscopic properties of three DEM-based constitutive models are summed up
in Table 2.
The FEM×DEM simulations in this present research have been performed using a sequential computing scheme. The

computational time is about 60 h for each simulation, slightly higher for CGM2 case. It is worth noting that in the mean-
time we have also developed more advanced computational frameworks for our FEM×DEM developments, allowing
OpenMP andMPI parallel computing schemes to be used. Parallelization helps to considerably speed up the simulations.
We invite the readers to refer to Desrues et al.17 for more details about the numerical implementation and comprehensive
comparison of numerical efficiency of different parallel computing schemes.

3.2 Macro-micro observations

3.2.1 Stress-strain behaviour

Once the FEM×DEM biaxial modelling performed, one can define normalized deviatoric stress 𝑞∕𝜎3 = (𝜎1 − 𝜎3)∕𝜎3 and
volumetric strain εv versus axial strain ε11 at the scale of the specimen. These are the measures used in Figure 5. Several
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phases can be defined in the response of the specimen:

(i) quasi-linear phase: at the early loading stage up to 0.3% of axial strain, in the hardening phase, all curves are similar
to each other. This can be explained by the behaviour of the VEs: under small deformation, the status of the contacts
is essentially within the failure criterion where each contact has an elastic behaviour characterized by 𝑘𝑛, 𝑘𝑡, and 𝑘𝑟,
identical for the three VEs. As the three VEs all have an equivalent number of initial contacts, the elastic properties
of the contacts being identical, the behaviour of the VEs is very similar, as is the calculation at the macroscopic scale.

(ii) reaching peak strength: by pursuing the hardening phase, past the quasi-linear phase, the curves diverge to reach a
peak, with a different peak stress value—which is logical since the cohesion levels in the three VE cases are different
(i.e., CGM1, CGM2, and CGM3); however, at this stage, it is difficult to clearly identify a cross-scale link between the
cohesion level (micro) and the peak strength (macro).

(iii) post-peak phase: finally, the deformation proceeds in a softening phase of overall strength reduction, during which
the different curves become essentially similar, with some temporary divergences. In trends, it can be noted that the
stress-strain curve reaches the same plateau. As we could see later in this paper, this plateau can be associated with
the occurrence of a persistent shear band. The response of the specimen is then dominated by this shear band.

Axial and volumetric strains presented in Figure 5 are issued from the overall deformation of the specimen. It can be
seen that a typical dilatant behaviour is obtained. In the post-peak regime, before entering the plateau, among the three
simulations, the maximum value of dilatancy angle is found in the case of CGM2 VE. While the CGM1 and CGM3 VEs
consist of perfectly circular particles, the meso-grains constituted by the brittle clusters of bounded particles behave like
large non-circular particles, implying a significant increase in the dilatancy angle. In addition, the non-regular shape of
the meso-grains also appears to increase the maximum shear strength. This is consistent with previous studies of the
influence of the grain shape on the mechanical behaviour of dense assemblies of cohesionless particles.68,69
The peak stress of the CGM2 and CGM3 tests are obtained at almost the same axial strain ε11 = 1.15%, and from

ε11 > 3.5%, their behaviours are very similar both in stress-axial strain and volumetric-axial strain relationship. These two
simulation responses show a post-peak softening phase up to ε11 = 4.0% before entering a significantly similar plateau.
Nevertheless, the softening is most pronounced in the case of CGM2 (with meso-grains) and less significant in the case of
strong cohesion CGM3.
Moreover, it should be noted that the peak stress of CGM2 is not only higher, but also much “sharper,” which means

that we obtain more “fragile” behaviour with meso-grains, in the sense of the fragile-ductile opposition (brittle-ductile)
widely used in rock mechanics.70 This observation will be further discussed in light of changes in microscopic properties
by studying the VEs at the microscopic scale.

3.2.2 Strain localisation pattern

A representation of the second invariant of the strain tensor at the macro scale indicates that strain localisation is present
in the whole three simulations (Figure 6) with shear bands orientations approximately equal to 45𝑜 − 46𝑜. Although it
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F IGURE 6 Second invariant of strain tensor map for 𝜀11 = 1.15% (top row), 𝜀11 = 3.0% (middle row), and 𝜀11 = 6.0% (bottom row)

may seem that the shear bands are oriented along with the finite element diagonal, previous studies using our multi-
scale model have shown that this is not necessarily the case and the inclination of the shear bands can be decorrelated
from the mesh,16 unlike the thickness of the bands; restoring mesh independency for shear band thickness requires the
consideration of the second gradient of the deformation, or other higher-order kinematics in the formulation of the finite
element problem.71–75 At ε11 = 3.0%, sample CGM1 is slightly localised, while in samples CGM2 and CGM3 shear band
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formation is already very visible. Finally, at ε11 = 6.0%, a larger localised zone is found for the case of weak cohesion
(CGM1, 𝑝∗ = 0.5) and the intensity of the deformation concentrated in the band is lower than two other cases (CGM2 and
CGM3). Once the strain localisation occurred, the specimen is divided into homogeneous and heterogeneous zones.21,23

3.2.3 Microscopic analyses

The left part of Figure 7 presents the deformed VE microstructures of an integration Gauss point inside the shear band
and another outside the shear band as depicted on the right part. Analyses are performed for three different strain levels
ε11 = 0.3% (pre-peak stress level), ε11 = 1.15% (peak stress level) and ε11 = 6.0% (post-peak stress level) (Figure 5).
In the hardening phase (𝜀11 ≤ 0.3%), the finite element mesh remains rather homogeneous for the three cases and a

shear band is not yet observed. At the micro-scale, it is also observed that, whatever their place in the mesh, the VEs
are deformed in a very similar manner for all Gauss points (the VE shape remains rectangular, no shear is observed).
Nevertheless, the VE of the CGM1 test (with 𝑝∗ = 0.5) has more broken-bond links (green lines) than in the other cases
(CGM2, CGM3).
At ε11 = 1.15%, the shear band is not yet observed for CGM1, while for CGM2 and CGM3, first hints of shear bands

allow us to predict their location without them being really developed, Figure 6 (top). As a consequence, the VEs are
still submitted to pure diagonal strain tensor, that is, no shear is applied at the microscale and the VE remains rectangular
whatever the Gauss point considered. Remembering that, for a givenmodelling CGM1, CGM2, or CGM3, the initial VEs at
each Gauss point are identical, it could be interesting to check if the VE evolution differs from a Gauss point to another. In
the Figure 7, it is clearly observed that whatever the chosen Gauss point, the VEs for CGM1 show very similar force maps.
Stronger differences can be observed in the VEs of the CGM3 modelling but these differences remain rather modest.
For CGM2, there are noticeable differences between the VEs chosen far from the shear band and the VEs taken in the
shear band. For the VEs taken in the shear band, the meso-grains seem to be largely destroyed. Outside the band, some
meso-grains still appear intact. It is interesting to note that when two cohesion levels coexist in the material, the contacts
carrying the lower cohesion seem to behave like fuses and some meso-grains remain.
For ε11 ≥ 1.15%, in the softening phase, the loss of homogeneity of the sample gradually increases and the shear bands

develop. This is confirmed by the different evolutions of the VE considered. It is interesting to note that from the peak,
the VEs outside the band do not vary much in terms of the contact list and cohesive links; only the intensity of force
chains changes, corresponding to the decrease of the axial force on the sample in the post-peak phase, which affects the
stress at the points situated outside as well inside the shear band. At the plateau of macroscopic response, it can be seen
from their shape of the VEs that the VEs in the bands deform differently from the previous phases, namely they present
strong rotations and intense shear; cohesion links are completely destroyed in VEs located inside shear bands in CGM1
and CGM3 cases; only two remain for the VE located in the shear band of CGM2.

4 MULTI-SCALE INSIGHT INTO STRAIN LOCALISATION: MICROSCOPIC ORIGINS

TheFEM×DEMgives a uniquemanner to assess information from inside the shear bandwith the study of theVEs assigned
to the Gauss points of the elements that are located in the shear band observed at themacro-scale. In this section, analyses
are concentrated on the CGM2 simulation to highlight the microscopic origin of macro strain localisation.

4.1 Non-coaxiality in cemented granular materials

Non-coaxiality refers to the deviation between the principal direction of the stress tensor and that of the strain increment
tensor. The non-coaxiality angle is defined by angle 𝛽 as shown in Figure 8. Themathematical description of 𝛽 is as follows:

𝑡𝑎𝑛
(
2𝜃𝜎𝑝

)
=

2𝜎13
𝜎33−𝜎11

(17)

𝑡𝑎𝑛
(
2𝜃𝜀𝑝

)
=

2𝑑𝜀13
𝑑𝜀33−𝑑𝜀11

(18)
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F IGURE 7 Microstructure evolution inside and outside the shear bands of CGM1, CGM2, and CGM3. For each simulation, one VE
located outside and one VE inside localised zone are considered. Three instants which correspond to macroscopic axial strain 𝜀11 = 0.3%

(before stress peak), 𝜀11 = 1.15% (almost stress peak) and 𝜀11 = 6.0% (almost final instant) are considered. Force chains are drawn with
convention: the thickness of the force chain is proportional to the normal force. Cohesionless contacts are plotted in green, contacts with
strong cohesion (𝑝∗ = 2.0) are red and contacts with low cohesion (𝑝∗ = 0.5) are blue
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𝛽 = 𝜃𝜎𝑝 − 𝜃𝜀𝑝 (19)

where (𝜎33 𝜎13
𝜎13 𝜎11

) is the stress tensor and (𝑑𝜀33 𝑑𝜀13
𝑑𝜀13 𝑑𝜀11

) the incremental strain tensor. 𝜃𝜎𝑝 , 𝜃𝜀𝑝 define themajor principal direction

of these two tensors, respectively.
The non-coaxiality in granular materials has been observed commonly, both experimentally and

numerically.42,43,47,48,76–79 This phenomenon naturally relates to the fabric tensor (contact orientation anisotropy)
and its evolution in sheared granular materials. So far, most of the constitutive models are formulated based on the
assumptions of coaxiality in the principal stress space. Thanks to DEM, the macroscopic behaviour of granular mate-
rials is determined through the interactions between particles, describing the discrete nature of such material. The
non-coaxiality therefore comes naturally from the microscopic scale (i.e., the granular scale).
Herewe propose to study the evolution of the non-coaxiality at the integration points in the case of theCGM2modelling.

We show in Figure 9 the elements for which the non-coaxiality will be assessed. We focus here on the elements identified
as being in the shear band. In the same figure (Figure 9), a map of the major and minor stresses and their orientations
is shown for ε11 = 6.0%. This map clearly shows that in the shear band and, more surprisingly, in its close vicinity, the
principal directions of the stress tensor at the integration points are different from those imposed at the sample boundaries,
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(A) EL39 (B) EL40

F IGURE 10 Non-coaxiality angle versus macroscopic axial strain in elements 39 (left) and 40 (right) (outside the shear band). The bold
continuous line represents the average value of the non-coaxiality angles of each element (over four integration points). The upper and lower
envelopes represent the maximum and minimum non-coaxiality angles in the four integration points of such element

that is, major principal stress in the vertical direction, and minor principal stress in the horizontal direction. On the other
hand, in areas far from the shear band, the principal stresses have orientations consistent with what would be expected—
they are identical to those imposed at the sample boundaries.We checked that the non-coaxiality is not significant in these
regions, that is, 𝛽 is close 0 degrees at the Gauss points (see Figure 10). For the elements of the shear band, 𝛽 is different
from 0 degrees. To illustrate that, the elements 6, 15, 24, 33, 42 are now considered, Figure 9.
On these elements, the angle 𝛽 is calculated at each Gauss point, throughout the simulation, from ε11 = 0.0% to ε11 =

6.0%. We show in Figure 11 the evolution of 𝛽 averaged on the four points of Gauss for the elements 6, 15, 24, 33, and 42.
An average over all the elements of the shear band is also shown in Figure 11F.
Surprisingly, one can observe that the 𝛽 angle fluctuates a lot all along the biaxial compression, whatever the chosen

element in the shear band. Secondly, it can be seen that 𝛽 remains smaller than 2 degrees (in absolute value) for ε11
smaller than 1.15%, that is, before the peak of stress. Around the maximum strength, 𝛽 shows large variations for the
non-coaxiality angle, with sudden alternations of increases and drop. One can notice that this also corresponds to the first
beginnings of the shear band for the CGM2modelling. For ε11 > 1.15%, the non-coaxiality angle varies a lot with 𝛽 ranging
from +25◦ to −25◦, but the maximum mean value remains in the range (−12◦, 15◦). Considering the maximum value of
the average non-coaxiality angle over the shear band, the range of variation is reduced to ±5◦. The value of 𝛽 angle is
scattered but in general, it shows a significant local non-coaxiality between stress tensor and increment strain tensor. This
strong variability of 𝛽 is hard to understand. Nevertheless, it is possible that the small number of grains (400 particles)
used for VEs makes them particularly sensitive to any changes such as changes in the contact network or the breaking of
some bonded links. Besides, it should be emphasized that in this study we use a first gradient model at macro-scale (i.e.,
FEM). Without regularisation by second gradient model, the width of the shear band tends to shrink to a single element
size. In such a case, the variation in behaviour between gauss points in the same element is significant. The latter could
also explain the strong variability of 𝛽. If second gradient model71,72,80 is used at the macroscale, it is believed that the
fluctuation in 𝛽 would be less important.
The results shown herein indicated that the non-coaxiality angle between the principal directions of the stress tensor

and strain increment tensor originates from microscopic evolutions of materials; its evolution is usually neglected with
the use of classical constitutivemodel for granular material. In fact, through the DEM-based constitutivemodel, the stress
tensor is directly computed based on the contacts force network. In the other words, the stress tensor is the result of gran-
ular force chains and interparticle displacement. The non-coaxility is therefore strictly originated from themicrostructure
and its evolutions.

4.2 Void ratio and contact direction

To highlight the pertinent mechanisms that lead to global failure of specimens, we investigate in this section the evolution
of void ratio and contact direction of VEs located inside the shear band (element 24–EL24) and outside (element 12–EL12).
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(A) EL6 (B) EL15

(C) EL24

(E) EL42

(D) EL33

(F) Shear band (SB)

F IGURE 11 Non-coaxiality inside the shear band (CGM2). From (A) to (E): The bold continuous line represents the average value of the
non-coaxiality angles of each element (over four integration points). The upper and lower envelopes represent the maximum and minimum
non-coaxiality angles among the four integration points of the element. The mean value over the shear band (list of elements 6, 15, 24, 33, 42)
is presented in Figure 11F

We propose here to compute for each VE the evolution of the void ratio all along the biaxial test. The void ratio of each
of the four VEs of each element is computed and averaged in order to assign a void ratio per element. The void ratio of
elements 12 and 24 is shown in Figure 12. In both elements, the void ratio essentially increases along the test, but the
void ratio in EL12 changes only slightly in comparison to EL 24 which is located inside the shear band. Figure 12 (right)
shows that in both elements, the void ratio does not change significantly before for ε11 = 1.15%, when the maximum
strength is reached. Then, the red (inside shear band) and blue (outside) curves diverge, the curve corresponding to the
element outside the shear band remaining essentially flat while the one corresponding to inside the shear band shows a
fast increase, shortly stopping to reach a plateau around ε11 = 4.0%.
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F IGURE 1 2 Void ratio evolution in presence of strain localisation in compression tests on sand: (left) Experimental observations of void
ratio in loose and dense Hostun sand by Desrues et al.81 and (right) void ratio variations averaged on the Gauss points for elements 12 and 24
(CGM2) versus the overall macroscopic axial strain (𝜀11). The vertical error bars are the standard deviation around the average
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F IGURE 13 Contact direction for initial state and
final global axial strain of 6.0% (CGM2 case): element
12 (left) and element 24 (right). Angular intervals of ten
degrees are used

This local void ratio evolution inside and outside the shear band as shown in Figure 12 (right) is nicely consistent with
experimental observations by Desrues et al.,81 recalled in Figure 12 (left). In both the experimental results and the present
numerical results, a limit void ratio is obtained inside the shear band (i.e., EL 24 in this simulation), while the void ratio
evolution remains negligible outside, leading the averaged void ratio over the whole specimen to stop its evolution shortly
after the full development of strain localisation, at a plateau significantly below the true limit void ratio. This evolution of
the overall void ratio and volume change can be observed both in Figure 12 (left) and Figure 5.
Figure 13A,B present the contact directions for the initial and final instants, corresponding to ε11 = 0.0% and

ε11 = 6.0%. The contact direction histogram is determined as the number of normal contacts falling within angular
intervals of ten degrees. Comparing the plots (a) and (b) in Figure 13 shows that in EL12, the number of contacts
decreased more homogeneously during the biaxial compression than in EL24, despite both VE started from the same
initial distribution. In EL24, a strong variation of the contact’s direction is observed, and the decreasing is remarkably
concentrated in the direction around 180◦.
In both elements 12 and 24, it can be seen that the polar histogram loses its isotropy: the anisotropy in contact direction

is noticeable. With the growth of anisotropy, the polar histogram takes shape of a peanut which is usually observed in
numericalmodelling of granularmaterial under biaxial loading.82,83 Interestingly, as noted above the anisotropy in normal
contact direction is muchmore significant in EL 24, that is, within the shear zone. This confirms that muchmore contacts
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F IGURE 14 Percentage of initial number of contacts (total (black), strong bond (red), weak bond (blue) and unbounded (green)) in
elements 12 (left) and 24 (right) versus the macroscopic axial strain (CGM2 case)

are lost in the extension than in the compression direction. This classic result is herein observed to be highly concentrated
in the shear band while rather limited outside the shear band.

4.3 Evolution of contact status and micro-cracking phenomenon

Reinforcing the qualitative results deduced fromvisual inspection of Figures 7 and 14 quantitatively confirms the evolution
of contact status (from bonded to unbounded) inside the element. Regarding the number of contacts, this value decreases
in both elements 12 and 24. As displayed in Figure 14A, most of the contacts with low cohesion (𝑝∗ = 0.5) in EL12 are
broken as soon as ε11 = 1.15%; on the other hand, bonded contacts with 𝑝∗ = 2.0 (strong bond) rapidly decreases from
the beginning of the simulation till ε11 = 1.15%, then stop evolving. These observations reveal that the elements located
outside the shear band change their microscopic feature (number of contacts) only during the hardening phase. Indeed,
the maximum stress peak of the specimen corresponds to the emergence of a localised deformation band, in which the
degradation of the material concentrates and induces a local drop of the material strength, resulting in a drop of the
stress level everywhere in the specimen as soon as the shear band has become a complete deformation mechanism for
the structure. In the softening phase, as the stress decreases, forces decrease in every VE in the specimen, not only in the
shear band, resulting in an almost complete freeze of strain and micromechanical changes in the VE outside the shear
band.
Other observations can be made for EL24 (Figure 14 right). Although in both elements 12 and 24, the total number

of contacts decreases and unbounded contacts number increases along the test, it is worth noting that in EL24, passing
ε11 = 3.0%, the number of unbounded and total contacts shows up to be equal: in other words, all the contacts are broken.
Moreover, as a consequence of the direct link between the number of active contacts and the contact coordination number,
the reduction of the total number of contacts shown in Figure 14 implies that in both elements but significantly more in
EL24, the contact coordination number has decreased. To summarize, these simple observations clearly show that in the
band, the clusters of particles are completely destroyed as soon as ε11 reaches 3%. On the contrary, far from the band, the
meso-grains (particle clusters) remain essentially intact or little damaged throughout the test.
In the next part of the section, the VEs deformations are studied through their evolutions with an emphasis on the

crushing of the meso-grains. The analyses were done by considering several VEs assigned to Gauss points located in an
element chosen inside the shear band (EL24), and compared with those of an element located outside (EL12).
As above mentioned, stress-strain behaviour showed first a hardening step before reaching maximal strength at 1.15%

of axial strain, then a post-peak regime, during which strain softening occurs with significant reduction of the deviatoric
stress. This behaviour can be related to themicroscopic features asmodelled in the VEs.Microscopic visualisation in terms
of normal forces allows to study the occurrence of micro-cracking. At the initial state, every contact is bonded. Along with
the loading, the failure criterion can be reached in individual contacts, leading to decohesion between grains at these
contacts.
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F IGURE 15 Volume element (VE) at initial state showing strong/weak bond and meso-grain. Identical VEs are initially assigned at all
Gauss points

The deformation of every VE remainsmoderate in the pre-peak regime. The normal, shear, andmoment at contact point
increase along with the loading, which induces micro-damages at grain contacts that spread through VE, a sequence of
events that is illustrated in Figure 14B. In the post-peak regime, inside the shear band, the contact decohesion becomes
general inside the VE, letting important displacement between grains take place. Indeed, micro-cracking phenomena can
be divided into inter- and intra-meso-grain cracking. Inter-granular cracking hereafter means the decohesion of bond link
between meso-grains or “individual grains” (i.e., grains that do not belong to the meso-grains). In other words, inter-
granular cracking takes place at meso-grain boundaries, or individual grain boundaries outside the meso-grains; con-
versely, intra-meso-grain cracking is characterized by the decohesion of the bond links within meso-grains, leading to
the disintegration of the meso-grains into smaller fragments. The intra-meso-grain cracking can be triggered from the
boundary or the interior of meso-grain.
In the rest of the paper, the following terminology is used: intra-granular cracking refers to cracking inside the meso-

grains, and inter-granular cracking outside, whatever located between simple weakly bonded grains or at individual to
meso-grains contacts or even at contacts between meso-grains (all weak bonds anyway).
The coalescence of micro-cracks generates intra-granular cracking through the meso-grain and cracking running

through the VE. It can be seen that some cracks occurred due to sliding uniquely while other cracks are open which
leads to a global dilatancy. Thus, the global dilative feature of material behaviour is reproduced. At the end of the
simulation, the global mechanical responses show a softening state related to micro-cracking at grain contacts. Lower
damage corresponds to lower softening of the global microscale response. Different micro-cracking patterns can exhibit
at different locations of the sample. The results suggest that the macro strain softening behaviour is related to grain
movement, micro-damage, initiation, and propagation of inter- and intra-granular cracking.84,85
The initial shapes of meso-grain are given in Figure 15, schematic deformed shapes are illustrated in Figure 15. As a

reminder, the VEs are all identical in the initial state at Gauss points, so the meso-grain are all the same as well from
one to another VE. Microstructural changes in pre-peak (hardening regime) are mainly related to grain rearrangement
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F IGURE 16 Cracking phenomenon inside volume element (VE) (Element 24, inside the shear band of CGM2) at the pre-peak state
𝜀11 = 0.3%. Four meso-grains are considered showing strong/weak bonds and initialisation of both inter- and intra-granular cracking

and inter-granular cracking. However, it can be observed that intra-granular cracking already occurred in onemeso-grains
during this phase (meso-grain no. 4 in the Figure 16). The propagation of intra-granular cracking leads to the disintegration
of the meso-grains into small fragments. As shown in Figure 16, the meso-grain no. 4 is broken into three fragments of
different sizes. Among them, the fragment 3 consists of only one single grain while the other two (fragments 1 and 2) are
composed of several grains connecting by strong bonds. The fragment consisting of only one single grain is called “released
grain” in the rest of the paper.
Figure 17 represents the evolution of selected meso-grains throughout the simulation CGM2 with a focus on EL12 (out-

side the shear band) and EL24 (inside the shear band). At the pre-peak state (𝜀11 = 0.3%), themeso-grains are quite similar
inside and outside the shear band, with the exception of meso-grain four in which the beginning of a fragmentation pro-
cess is recognised. Once the stress peak is reached (𝜀11 = 1.15%), the meso-grains in elements 12 and 24 are affected by
fragmentation but differences between 12 and 24 become apparent. As clearly shown in the figure, except the meso-grain
no. 1, the fragmentation by intra-granular cracking are observed both inside and outside shear band (for example meso-
grains no. 1, 2, 3, 4 in EL24 inside the shear band andmeso-grains no. 2, 3, 4 outside the shear band). As for the differences,
essentially the fragmentation is more intense inside the shear band. At the peak stress, even the meso-grain shape is sim-
ilar in elements 12 and 24, there are more “released” grains in element 24 than in element 12, indicating again that the
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F IGURE 17 Evolution of selected meso-grains of elements 12 (VE-1) and 24 (VE-2). As a result of micro-cracking, the meso-grains are
disintegrated into small fragments of several grains and single grains. The initial meso-grains and small-fragment are colored while the
released grains that do not belong anymore to meso-grains are shown in white

intra-granular process is more intensive inside the shear band. The shape of meso-grains is better retained outside the
shear band, which is in agreement with the evolution of VE shapes. When the specimen’s behaviour enters in the soften-
ing regime and reaches critical state inside the shear bands, meso-grains no. 2, 3 and 4 in EL24 are completely destroyed
in terms of bond and shape: all the grains that constituted these meso-grains have been released by intense cracking.
Conversely in element 12, the meso-grains have been broken into a few pieces, but not pulverised as inside the shear
band. The disintegration of the meso-grains into small fragments due to intra-granular process, induces loss of stability
and strain softening.1 This allows the small fragments to translate and rotate easier and result in strain localisation. Local
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concentration of forces induces the initiation of the cracks discussed above. The crushing effect on large grains surrounded
by small ones has been reported in previous studies, for example, Tsoungui et al.32
Microstructure evolution related to micro-damage mechanism of bonded granular materials presented above can be

summarised as follow. Micro-damage process consists of the development inter-granular cracking first, followed by intra-
granular cracking throughout the meso-grains. The initiation and propagation of micro-cracking lead to loss of stability
and increasing strain softening of the specimen. This macroscopic aspect is concomitant with void ratio change of such
elements as above-mentioned. As loading progresses, the more meso-grains are broken, the more released grains and
small fragments are free to rotate and translate.

5 CONCLUSIONS

The presented FEM×DEMmulti-scale model allowed to study the physical and mechanical properties of CGM, involving
both a microscopic numerical model and a macroscopic one working concurrently. The microscopic model of granu-
lar assembly employed at the micro-scale, was using Discrete Element Modelling, which allows the contact interaction
between neighbouring particles to be considered. A specific contact lawwas adopted to reflect the cementing of the bonds,
including normal, tangential, and rolling resistance. The model considered the bond failure between neighbouring parti-
cles as irreversible. At the macroscopic level, a non-linear Finite Element Model was used. The main objective of multi-
scale modelling is to efficiently bridge scales by numerical homogenisation. In this paper, biaxial compression tests were
modelled, exploring three different cases of VE at the micro-scale. The different VEs were defined to describe CGM with
varied bond strength. The CGM1 case (resp. CGM3) used weak (resp. strong) bonds everywhere. Conversely, in the CGM2
case, a combination of weak and strong bonds was used, distributed in such a way to define a set of meso-grains in the
VE surrounded by weakly bonded individual particles. The introduction of meso-grains in this simple way was shown to
effectively describe the macro-strain localisation caused by inter- and intra-granular cracking.
The macroscopic results obtained show that the CGM2 has the highest shear strength. This result is a priori contra-

intuitive, since the specimen described by the VE CGM3 with strong bonds everywhere seems a better candidate to give
the strongest response. In the presentmodel CGM2, themeso-grains are surrounded by individual particles, however,most
meso-grains are directly in contact with other meso-grains. Such an assembly may benefit simultaneously the strength
of the meso-grains and some ductility brought by the weak individual particles surrounding them. Based on the present
results, it is difficult to validate this tentative explanation. It is one of the perspectives for further work to study the effect
of different proportions of meso-grains versus individual grains on the global strength of the specimen modelled; another
interesting exploration could be to vary the ratio of the strength of the weak and strong bonds.
Strain localisation is observed in all three cases, but a higher shear intensity is found in CGM2 and CGM3 while a

geometrically larger localised shear zone but less intensive is shown inCGM1 case.Multi-scalemodel FEM×DEMprovides
a unique way to assess the mechanical behaviour of CGM on both macro and micro scales: the present paper has shown
that the microscopic behaviour can be analysed in connection with the macroscopic localisation process by comparing
the phenomena occurring in the VEs of different elements located respectively inside and outside the shear bands. The
findings reveal that the macroscopic strain localisation has a strong connection with microscopic aspects such as bond
breakage, contact orientations, and void ratio of VEs. The following conclusions can be drawn from these concurrent
macro-micro analyses:

(i) Before the stress-strain peak, the coaxiality of the principal strain increment and principal stress direction is observed
both inside and outside the shear band; conversely, when the material behaviour enters in the softening phase, non-
coaxiality becomes significant in the sheared zones, more than in homogeneous zones.

(ii) The void ratio evolution is nicely consistent with experimental observations reported in other studies, showing a
large jump of dilatancy inside the shear band during the first stage of strain localisation.

(iii) Anisotropy in contact direction is much more significant in the shear band.
(iv) Micro-cracking analysis shows that both inter- and intra-granular cracking occurs in the model involving meso-

grains. This has a strong implication in the macroscopic shear strength of materials. It is observed that while the
cohesion is completely destroyed for VEs belonging to elements inside the shear band, yet VEs outside the shear
band show several (but not all) meso-grains that remain almost intact up to the steady state of the macro simulation.
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However, the current development still has some limitations with the use of only 2D FEM×DEMmodel and the simple
up-scaling process which ignores nonlocality or higher order terms. Extending the former one to 3D case is straightfor-
ward thanks to our current 3D developmentmodel.17,37,86 Incorporating the fully bondedmodel into a recent 3D advanced
damageable contact law is also planned. Concerning the latter one (i.e., up-scaling process), the use of higher order con-
stitutive framework at themacroscopic level (e.g., second gradient71) or other alternative approaches (e.g., size-dependent
constitutive modelling framework87 or strain smoothing technique36) would be necessary to mitigate mesh dependency
of the thickness of shear bands, as classically observed in numerical modelling of strain localisation. Among them, the
second gradient improvement has been implemented without difficulty with our FEM×DEM approach, as demonstrated
in Desrues et al.17 Incorporating this improvement in the present CGMmodel involving meso-grains is straigthforward, it
is among the perspectives of extension of the present study. However, although only a first gradient formulation has been
used at the macro-scale (FEM) in this paper, the current results demonstrate the FEM×DEM capability to reproduce and
bridge several interesting observations at both macro and micro-scales. Analyses of microscopic properties help to shed
light on the origin of macro-phenomena, a major advance brought about by multi-scale approaches and analysis.
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