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Abstract Spontaneous formation of fingered patterns dur-
ing the displacement of dense granular assemblies was
experimentally reported few years ago, in a radial Hele-
Shaw cell. Here, by means of discrete element simulations,
we have recovered the experimental findings and extended
the original study to explore the control parameters space.
In particular, using assemblies of grains with different
geometries (monodisperse, bidisperse, or polydisperse), we
measured the macroscopic stress tensor in the samples in
order to confirm some conjectures proposed in analogy with
Saffman–Taylor viscous fingering phenomena for immisci-
ble fluids. Considering an axial setup which allows to control
the discharge of grains and to follow the trajectory and the
pressure gradient along the displacing interface, we have
applied the Darcy law for laminar flow in fluids in order
to measure an “effective viscosity” for each assembly com-
bination, in an attempt to mimic variation of the viscosity
ratio between the injected/displaced fluids in the Saffman–

Electronic supplementary material The online version of this
article (doi:10.1007/s40571-016-0113-8) contains supplementary
material, which is available to authorized users.

B A. P. F. Atman
atman@dppg.cefetmg.br

1 Post Graduation Program in Mathematical and Computer
Modeling (PPGMMC), Centro Federal de Educação
Tecnológica de Minas Gerais (CEFET-MG), Av. Amazonas
7675, Belo Horizonte, CEP 30510-000, Brazil

2 Departamento de Física e Matemática, CEFET-MG, Belo
Horizonte, Brazil

3 UJF-Grenoble 1, Grenoble-INP, CNRS UMR 5521, 3SR Lab,
38041 Grenoble, France

4 PPGMMC/CEFET-MG, Belo Horizonte, Brazil
5 National Institute of Science and Tecnology for Complex

Systems - INCT-SC, Rio de Janeiro, Brazil

Taylor experiment. The results corroborate the analogy with
the viscous fluids displacement, with the bidisperse assembly
corresponding to the less viscous geometry. But, differently
to fluid case, granular fingers only develop for a specific
combination of displaced/injected geometries, and we have
demonstrated that it is always related with the formation of
a force chain network along the finger direction.
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Molecular dynamics simulation · Effective viscosity

1 Introduction

Granular systems are ubiquitous on human daily activities
and natural phenomena, presenting a rich phenomenology
with several remarkable features, most of them remaining
without a comprehensive theoretical description [5,22,30–
32,42]. The capacity of a granular assembly that behaves as a
solid, a liquid, or even a gas depending on the external driving
is related to the occurrence ofmetastable states [4,33,41,45],
and several studies are devoted to describe the occurrence
of these states in different phenomena: avalanches [13,47],
jamming/unjamming transition [12,15,35,53], segregation
[38,40,44], history dependence [6,16,27], reverse buoyancy
[2,28,50], granulence [19,20,46,48], clogging [39,57,58],
etc. Among these, the spontaneous pattern formation [17,
34,36,40,55] is one of the most intriguing phenomena due
its intrinsically out-of-equilibrium nature. Hence, theoretical
descriptions treating these systems are seldom found in the
literature [49].

Nevertheless, pattern formation is a key concept to under-
stand how nature works and creates forms, and the quest to
access the basic knowledge of the underlying mechanisms
of a wide range of phenomena is still attracting the inter-
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Fig. 1 a Normal (n) and
tangential (t) directions at the
contact point between two
grains. b Interpenetration d at
the contact point. c Force law in
the normal direction. d Force
law in tangential direction.
Symbols are explained in the
text

est of researchers from different fields as biology, physics,
engineering, computation, etc. [13,54,56]. In particular, the
displacement of a fluid invading a heterogeneous media is
an example of phenomena where the combination of theory,
experiment, and numerical modeling can be used together to
investigate a system in detail [3,11,14].

Few years ago, Pinto et al. [43] reported an amazing
spontaneous pattern formation during the quasi-static grain–
grain displacement in a Hele-Shaw cell, varying some of
the grains characteristics. The patterns displayed beautiful
fingered structures for some parameters combinations, and
sometimes symmetric six-folded structures have emerged
[43]. At that time, a simulation was performed and qual-
itatively validated by the experimental results, but several
questions concerning the microscopic features of the simu-
lation remained open. In this work, we hope to fill some of
these gaps, presenting detailed results for the fingering phe-
nomena in a radial Hele-Shaw geometry, varying the friction,
stiffness constant, and the geometries of the grain assem-
blies. We also extended the original study to consider an
axial geometry, the channel, in order to investigate the ori-
gins of the fingering formation in granular media and explore
more closely the analogies with the Saffman–Taylor viscous
fingering phenomena during the displacement of immiscible
fluids [18,37,51].

Thus, after this brief introduction we present in the next
section the basic methods used in the simulations and how
to extract the measured quantities in each geometry. Next,
we present our results considering the radial and axial
geometries, closing the paperwith our conclusions, acknowl-
edgements, and the references.

2 Methods

The numerical simulations were performed using a code
based on Discrete Element Method (DEM), developed by
us in C language, dedicated to 2D circular shapes—disks. In
this code, the motion of particles is time discretized by a 3rd

order Gear Predictor–Corrector scheme [1]. Our DEM code
is, thus, an explicit time-iterative approach composed of three
main numerical stages: (i) prediction of the grain’s position,
velocity, acceleration, in both in translation and rotation; (ii)

detection of grains which are in contact and evaluation of
the contact force; and (iii) correction of the grain’s position,
velocity, acceleration, in both on translation and rotation,
with the use of the 3rd order Gear coefficients [1].

The rigid disks interact each other at the contact points,
Fig. 1a. Each time that a contact occurs, the overlap distance
di j < 0 between the two disks i and j is computed (Fig. 1b;
di j = ∥r j − ri∥ − Ri − R j , where ri and r j are the coordi-
nates of the grains i, j , respectively; and Ri , R j , their radii,
respectively). The normal repulsive force fn > 0 is hence
computed and assumed proportional to di j ; fn = −kn di j .
kn denotes the normal stiffness of the contact, Fig 1c. It is
constant for all contacts involved in the simulation, no mat-
ter the radii of the two disks which are in contact. Since that
adhesion forces are not taken into account in this work, fn
is always positive. In order to be able to reach equilibrium
states, the internal energy of the system must be damped.
One way is to consider inelastic shocks between particles.

For that, a viscous force is added to fn ; fn = −kn di j −
ηn δvni j , where δvni j is the normal relative velocity in the
contact between grain i and j . The damping coefficient (vis-
cosity) is defined by ηn = 2ζ

√
kn mi j (mi j = mim j

mi+m j
is the

reduced mass of the two grains i and j of mass mi and m j ,
respectively) where ζ is a non-dimensional parameter such
that ζ = 1 corresponds to the critical damping, i.e., perfectly
inelastic shock. In order to ensure the numerical convergence
of the discretized scheme of Newton’s equations, ζ must be
smaller than 1; we use ζ = 0.95.

In each contact, friction is taken into account. Hence, a
tangent force ft is computed for each grain contact. The
force model used for ft is incremental and follows the one
suggested by Cundall & Strack [21]: for each time step
$T , an increment of tangential force opposed to the incre-
ment of the tangential relative displacement δUt is computed,
δ f $T

t = −kt δUt . At time T +$T , the total tangent force is
thus given by ft = f T+$T

t = f Tt + δ f $T
t . Hence, time step

after time step, ft is incremented or decremented. Neverthe-
less, ft is limited by the Coulomb condition, | ft | ≤ µ fn ,
where µ is the static coefficient of friction between grains,
Fig. 1d. The next stage consists in computing the sum of the
forces on each grain (contact forces and volume forces, e.g.,
the drag force due gravity acceleration), Fi . The corrected
acceleration is hence computed for each grain aci = Fi/mi .
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Table 1 Parameters used in
simulation, in normalized
unities (see [8] for more details)

$T kn kt/kn

10−4 1000 0.75

The difference between the corrected acceleration computed
at the end of the time step and the predicted acceleration
evaluated at the start of the time step,!ai, the so-called “cor-
rector” is finally used with the Gear coefficient to compute
the new velocities and new positions for the particles. This
computation ends the current time step; grains are ready for a
new time step. The explicit discretized scheme is condition-
ally numerically stable. To ensure that each time step will
converge, one has to be sure that the time step $T used to
numerically integrate the Newton’s equations is smaller than
the so-called critical time step $Tc = √

mi j/kn . $Tc cor-
responds to the typical contact duration when two particles
shock each other. In order to accurately describe what hap-
pens since the contact creation to its end, the time step $T
used in DEM must be only a part of $Tc. Depending on the
accuracy required for the simulations, $Tc can be divided
by 15, for raw descriptions of the contact physics, up to 100,
for a very accurate computations of collisions. In this paper,
we have arbitrarily used $T = $Tc/50 and the mass used
to compute $Tc was the smaller mass present in the system,
i.e., the mass of the smallest particle (Table 1).

For technical reasons, we chose the cross-sectional length
of the system, L , as the unity of length. For other specific
normalizations used in this code and for the values of the
normalized elastic quantities, please check [8]. The normal-
ization procedure applied here was designed to avoid large
interpenetration of grains and save CPU time with unphysi-
cal calculations. All codes used here were developed by us
in C language.

Thus, we are able to build different assemblies of grains
and impose a variety of tests to them, changing geometries
and microscopic parameters. From the positions, velocities,
and forces of each element on the system, we can calcu-
late strain and stress fields, and measure several quantities
of interest, as the coordination number, response functions,
elastic parameters, etc. [7,9,10,38].

In this work, we have particular interest in measuring
the stress field for several different assemblies. Under very
general considerations, it was shown [26] that an exact
expression of the stress tensor σαβ at position r for a sta-
tic assembly of grains (i.e., when the kinetic part of the stress
can be disregarded) is given by

σαβ(r) =
1
2

∑

i, j;i ̸= j

fi jαri jβ

∫ 1

0
ds Φ[r − ri + sri j ]. (1)

In this expression, Roman indices are particles labels,
whereas Greek ones denote the Cartesian coordinates. ri j ≡

ri −r j , are the branch vectors, where ri is the center of mass
of particle i , and fi j is the force that the particle j applies over
the particle i . The integral is performed along the direction
of the contact, s (more details can be found in the chapter 14
of reference [42]).Φ(R) is an arbitrary coarse graining (CG)
function which is normalized, positive semi-definite with a
single peak atR = 0, and a typical lengthw, the CG scale. In
the case of a Gaussian CG function, as used here, this scale
corresponds to the Gaussian width.

Note that the sign convention chosen here for the stress
is the one commonly used for granular pressure (where
compressive stress is positive), and not the one used in
other fields of continuum mechanics (and in [26]). This
expression for the stress obeys exactly the equation of static
equilibrium ∂βσαβ = Bα (the static limit of the momen-
tum conservation equation), where Bα is the body force
(e.g., B = ρg for packings of density ρ under gravity).
Note that σαβ depends, in general, on the choice of Φ,
and in particular on the coarse graining scale. Continuum
mechanics is based on the notion that there exists a range
of values of w, sufficiently large compared to the micro-
scopic scale, but smaller than the scale of the microscopic
gradients (a scale separation regime), for which the macro-
scopic fields, such as the stress tensor, are independent of
w and of Φ. The existence of such a regime in the systems
was demonstrated in [23]. We have used a Gaussian coarse
graining function, Φ(r) = 1

πw2 exp−(|r |2/w2), where w

corresponds to the Gaussian width, and w = 6d, where d
is the mean diameter of grains. Since that our simulations
were performed on quasi-static regime (typical displace-
ment imposed is 1/5000 mean diameter by time step) the
contact component contribution for the stress field is sev-
eral orders of magnitude larger than the dynamical one,
which justifies our choice to disregard the kinetic stress
term.

Now we will present the different geometries used for the
assemblies of grains, describing the particular choices made
in each case. In general, we have considered three different
assemblies of grains: monodisperse, bidisperse, and poly-
disperse. The monodisperse assembly considers exactly the
same radius for all grains. In some caseswe test displacement
of a monodisperse assembly by another one with different
radius, but if nothing is specified, assemblies with exactly
same radii are used. The bidisperse assemblies have grains of
two sizes, typically R and R/2,with the same amount ofmass
for each subset. In this way, the bidisperse assembly avoids
crystallization more efficiently than any other assemblies—
Fig. 2. The polydisperse assemblies consider a uniform
distribution of radii in the range R(1− ϵ) < ri < R(1+ ϵ).
In this case, we can expect some segregation effects and also
crystallization, but in much less extension compared with the
monodisperse case. Figure 2 is a remarkable example where
even a small amount of polydispersion (ϵ = 0.05) can alter
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Fig. 2 Force chain network for different configurations in radial geom-
etry. The three configurations are generated using DEM simulations
with different assemblies of grains. a Monodisperse grains displaced
by monodispersed ones. b Polydisperse substrate displaced by polydis-

persed grains. c Monodisperse base displaced by bidisperse assembly.
Note that only with monodisperse assembly, the displacement results
to a fingering pattern

Fig. 3 Spontaneous pattern formation during grain–grain displace-
ment. We show the pattern formation during the injection of monodis-
perse grains with radius R = 1.5, in a monodisperse substrate with
radius R = 1. From left to right, the ratio of the normal stiffness

constant to the injected grains relative to the displaced ones, K/k, is
increased from 0.1 to 100. Clearly, for K/k = 10, the fingering forma-
tion is enhanced

dramatically the resulting pattern formed due the grain dis-
placement.

2.1 Radial geometry

In this case, the system is equivalent to the experimentalHele-
Shaw geometry [43]. A substrate consisting of grains placed
in a hexagonal pattern, with plane symmetry and without
gravity, is initially generated. Basically, the grains on the
substrate occupy a triangular lattice (six next-neighbors) in
such a way that they form an initial hexagonal pattern that
will be deformedwith the injection of the grains. Then, grains
are inserted on the system from the center, one by one. The
algorithm to insert a grain is a bit tricky. Basically, the grain
is inserted in a random empty place found within a circle
of radius 3d/2 centered at the center of mass of the initial
substrate. Initially, the inserted grain has its radius set to 0
and it grows at each time step by a ratio d/10, 000. After
5000 steps, this increase of radius is stopped and the system
is left to relax by another 5000 time steps. Thus, the grains
are inserted in each 10,000 time steps, one by one.

Typically, a simulation run has 3781 grains in the substrate
and another 3500 grains are inserted along the simulation. To
avoid grain evasion and tomimic the effect of the glass plates
of the Hele-Shaw apparatus, we introduced an additional vis-
cous drag friction, ϑ . It simulates the loss energy between
the grains and the cell plates and can assume values between
0 and 1, in analogy with “drag friction,” FD = −bvi where
vi is the velocity of the grain i and b = ϑ/(1− ϑ). We fixed
the value to ϑ = 0.1 in all simulations shown here. The nor-
mal stiffness used on the inserted grains was 10 times greater
than the value used on the grains of the base, since it was the
value which has enhanced the fingers—Fig. 3.

Some parameters were varied in order to observe the
collective behavior and determine which ones enhance the
fingering pattern. In all cases considered here, the injected
grains are larger than the displaced ones, since it was the
case in which the experiments displayed fingered patterns.
However, we also have obtained fingered formation using
injected grains smaller than the displaced ones, since in sim-
ulations, the system is strictly two-dimensional, and, in the
experiments, the spatial feature of the setup was the respon-
sible to frustrate the fingering formation [43]. We generate
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Fig. 4 Stress evolution of a
monodisperse substrate during
the insertion of a single grain.
As explained in the text, each
panel corresponds to the
instantaneous stress field
calculated after 100 time steps,
during the last 1000 time steps
of insertion of a grain. Note the
heterogeneous feature of the
stress field, with higher values
along the fingers’ directions.
Time is increasing from left to
right and from top to bottom as
indicated

10 samples for each set of parameters. The friction coeffi-
cient was set to µ = 0.5, unless explicitly indicated, and we
have tested the following combinations of displaced/injected
grains:

– Monodisperse/monodisperse different friction coefficie-
nts between particles were tested (µ = 0.10, 0.50, 0.90);

– Polydisperse/polydisperse with polydispersion of 30%
(ϵ = 0.3);

– Monodisperse/bidisperse injected grains are bidisperse
with radii ratio R/r = 2/1.4. Grains on the substrate
have unitary radii;

– Polydisperse/monodisperse radii of injected grains 1.5
times larger than the size of the largest grain of the sub-
strate.

In order to better understand the mechanism involved dur-
ing the grain injection, we follow the stress field during the
injection of a single grain in the first two combinations of
geometries described above. To avoid transient effects, we
calculate the stress along the insertion of the last grain in a
sample of each system. The data were collected at each 100
time times steps and the instantaneous stress profiles are cal-

culated from Eq. 1. These profiles are shown in Figs. 4 and 5
for 1000 time steps, allowing to observe the evolution of the
stress profiles.

2.2 Axial geometry

We consider in this case a channel as shown in Fig. 6,
filled typically with N = 30, 000 grains of a given assem-
bly. Connected to this channel, another channel, narrower,
is filled with another set of grains (typically N/8 monodis-
perse grains) which are then pushed into the larger channel
by a piston with constant velocity (in all simulations with
this geometry, a displacement of d/15, 000 is imposed at
each time step). The grains are confined by lateral and top
walls. The lateral walls are in general fixed but, eventually,
a constant pressure is imposed to the walls to allow them to
move. The top wall is placed atop the assembly of grains and
it is free to move (it has a mass corresponding to that of 1000
average grains). Again, we have disregarded the gravity and
considered ϑ = 0 in this case. Thus, on this geometry, all the
system parameters can be kept fixed and only the geometry of
displaced assembly be varied, allowing to test the elastic and
mechanical macroscopic properties of the specific geometry
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Fig. 5 Stress evolution when
one grain is inserted into a
polydisperse sample. In this
case, the stress field is much
more homogeneous than the
monodisperse case. The
sequence of images corresponds
to the stress field fluctuations
due the insertion of a single
grain at each 100 time steps,
during the last 1000 time steps
of insertion of a grain. Time is
increasing from left to right and
from top to bottom

Fig. 6 Scheme used in the axial geometry. A channel filled with grains
of a certain geometry is displaced by another set of grains pushed from
a narrow channel with constant velocity v, with aid of a piston. The
typical lateral extension of systems is L = 240 and the narrow channel
has typically 1/10 (c = 10) of the lateral extension. The last grains in
the piston were colored in alternative layers to allow the observation of
the deformation of the layers during the grain injection

considered. In order to explore the origins of the fluid-like
behavior during grain–grain displacement, we decide indeed
to keep all control parameters fixed (kn, ks, µ etc.), and to
vary only the assembly geometries used in the large channel:
monodisperse, bidisperse, and polydisperse (5% ). The set of
injected grains are monodisperse in all the cases considered
here in order to keep the loading of material exactly the same
during the tests.

In this geometry, a direct comparison with the Saffman–
Taylor experiment [51] is possible. The effective viscosity of
the medium during the displacement of grains can be esti-
mated from the stress tensor measured along the growing
interface between inserted and displaced grains, as explained
in the following paragraph.

Darcy flow Consider the flux Q of granular material along
the channel. Defining φ as the packing fraction, the ratio of
the total area of grains to the area of the channel, we canwrite
the following expression for the discharge of material, Q,

Q = φv
L
c
, (2)
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where v is the mean velocity of the injected material and L
is the width of the channel. L/c corresponds to the width
of the narrow channel used to inject the grains, and c is the
reduction factor used in the narrower channel. Considering
the Darcy law for viscous laminar flow in fluids,

Q = −κA∇P
η

, (3)

where∇P is the pressure gradient, κ is the permeability, and
A is the cross-sectional area of the channel, we can write the
following relation for the effective viscosity ηe f ,

ηe f =
−cκ∇P

φv
. (4)

Thus, by measuring the pressure drop along the displace-
ment front of the injectedmaterial, and the stationary velocity
of the front, we expect to be able to estimate an “effective
viscosity” for the displacement of grains on each assembly
studied. Since we consider the same geometry of the chan-
nel, it is reasonable suppose that the value of κ is constant
for all simulations. φ and v are also kept constant, since the
grains are injected exactly in the same way along the differ-
ent experiments. Thus the only effect on the measured ηe f
should be due the specific geometry used in the assembly of
displaced grains.

3 Results and discussion

We present in this section our major findings concerning the
fingering phenomena during the grain–grain displacement
in the two geometries described above. First, we show the
results for the radial geometry, inspired by the Hele-Shaw
cell and the experimental setup [43]. After, we show the
results for the axial case, which was designed for a more
specific comparison of different assemblies of grains, and
present a quantitative comparison of the effective viscos-
ity measured to each assembly. The idea along the analysis
presented is, starting with the simulation parameter set cor-
responding to the best reproduction of the experimental data,
gradually sweeps the parameter space varying microscopic
features of the grains and also the assembly geometry to
explore the fingering formation. Next, with the axial geome-
try, we reduce the complexity of the system to theminimal, in
order to systematically test the analogy with the immiscible
fluid displacement—Saffman–Taylor fingering phenomena.

3.1 Radial geometry

Here, we show results for the displacement of different
combinations of injected/displaced geometries, as well for

different sets of the microscopic control parameters in order
to explore the parameter space of the system. In previous
work [43], the authors presented results from several experi-
ments of injection of grains in a Hele-Shaw cell, varying the
type of grains (steel, plastic, styrofoam) and their relative
sizes and geometries. They show that when a monodis-
perse assembly of grains is injected, with larger diameters
compared to the displaced ones, there is a tendency to spon-
taneous fingers’ formation, especially six-fingered patterns.

In the original work, the friction coefficient between par-
ticles was fixed to µ = 0.5. Thus, we decided to vary it to
determine its physical influence in the collective behavior of
grains. The substrate assembly was also tested for monodis-
perse and polydisperse ones. For each case tested, 10 samples
were generated in order to observe stochastic fluctuations.
Some of results are shown in Fig. 7, where the thickness of
the black lines corresponds to the contact force magnitude
between grains. It is possible to infer that the geometry of
the displaced grains has almost no influence in the pattern
formation based on the tests with monodispersed (triangular
and square lattices), bidispersed, and polydispersed grains.
The only difference observed was some irregularities in the
boundaries between the inserted grains in the polydispersed
substrate case. The stress on the system increases with fric-
tion, as noted in the force chain magnitude in Fig. 7, and
we have confirmed that the value µ = 0.5 enhances the
formation of the six-folded pattern, but for all friction coef-
ficients tested, there was spontaneous fingering formation.
Since the elasticmodulus of the inserted grainswas kept fixed
to 10 times the modulus of the displaced grains, as already
explained in the Sect. 2, we can conclude that the friction
coefficient between grains does neither play a central role on
the fingered pattern formation nor on the substrate geometry.

Figure 2 shows the contact force chain network for three
different samples. Here, only contacts in which the force
magnitudes are larger than the local mean forces are shown.
As the grains are pushed from the center, it is natural to infer
that the intensity of the forces will decrease radially from the
middle. Thus, we determine the average local force along
radial direction to allow the comparison with the intensity of
the contact forces which are at the same distance from the
center. In the monodisperse configuration, the force chains
are clearly along the fingers’ directions. In the polydisperse
systems, the force chains directions seem to be random, fea-
ture which is enhanced for the bidisperse system. All the
polydisperse samples resulted in symmetrical hexagonal pat-
terns, with some fluctuations, and all the bidisperse systems
resulted in more smooth circular shapes. However, the sub-
strate displaced by the bidisperse systems displayed irregular
shapes differently to the circular patterns displayed in the
polydisperse substrate samples. It occurs due the crystal-
lization which develops spontaneously in the monodisperse
case.
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Fig. 7 Monodisperse inserted grainswith different friction coefficients
between particles. a Polydisperse substrate (30%), with monodisperse
injected grains. Friction coefficient between particles equals to 0.5. b
Monodisperse base andmonodisperse injected grainswith friction coef-

ficient between particles equal to 0.1. c Monodisperse configuration
(base and injected grains) with friction coefficient equals to 0.9. Note
that in a we can clearly observe the force chains oriented to the fingers,
as well the increase of stress on the tips

Fig. 8 Correlation between the three preferential directions of the con-
tact vectors along the direction of the fingers and the threemost frequent
contact angles from force contact network. a Monodisperse system. b
Polydisperse system. c Bidisperse system. For monodisperse config-
uration, we expected that the points would be distributed in a linear
function with slope equal to 1.0, and the results obtained of the linear

fit were Y = −0.5(8) + 0.98(2) × withR = 0.997, corroborating our
prediction. This plot represents a quantitative result showing that the
contact angles are in the fingers’ directions. For polydisperse and bidis-
perse configurations, it was expected no correlations between the three
peaks and the contact angles, which is confirmed by the sparse cloud of
points obtained in these cases

To test the qualitative conjecture that the principal contact
direction of monodisperse systems is responsible for the fin-
ger formation [43], we performed a quantitative verification
of this conjecture. In the case of the polydisperse and bidis-
perse systems, we expect that the contact angles are not in the
same direction of the largest concentration of injected grains
(fingers). To prove it, three graphs were generated, for each
configuration tested, as shown in Fig. 8. Here, the correlation
between the main directions of the fingers measured on the
samples and the most frequent contact angles on these sam-
ples are shown. Clearly, for the monodisperse case, a very
strong correlation is observed, while for the other cases we
do not observe any clear correlation.

Thus, we can assure that the fingering pattern formation is
associated with the crystallization of the inserted grains, as
conjectured by Pinto et al. [43]. The resulting hexagonal pat-
tern should be related to the spontaneous hexagonal lattice
which is formedwhenmonodisperse grains are confined (one
grain has, in general, contacts with six neighbors which can
open or close randomly). It interesting to note that this con-

figuration is the onewhich have the smallest relation between
the perimeter and the occupied area, as known by the bees
which build their honeycombs in hexagonal lattices [29]. In a
confined system, the grains are distributed in a close-packed
configuration, thus they tend to form regular structures and
then crystallize. In a crystallized sample, when one grain
receives a force coming fromaneighbor grain, the force chain
can propagate along the radial direction, or can split in two,
generally with an angle of 60◦, between two of the oppos-
ing neighbors of the grain; the grains will move in the force
directions, and, considering the symmetry of the neighbor-
hood, it will imply to the six fingering pattern observed in the
experiments and simulations. In polydisperse and bidisperse
systems, crystallization is frustrated due the size dispersion
on these systems: when a grain receives a force from a con-
tact, there is no preferential direction to propagate the stress,
leading to the circular deformed patterns observed.

Figures 4 and 5 show, respectively, the stress evolu-
tion for monodisperse and polydisperse simulations. The
instantaneous stress profiles were generated to observe the
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Fig. 9 Morphologies obtained for the case of the axial geometry. In all
cases, a monodisperse set of grains is injected on the substrate. In the
first row (a–c), three samples with a bidisperse substrate; in the second
row (d–f), three samples with pattern formation in a polydisperse (5%)
substrate. Note the difference between the “wetting” angle of the inter-
face formed by the injected/displaced grains. The bottom row (g–i) the

injection into amonodisperse substrate is shown. In this case, the panels
show the temporal evolution of the injected grains, the time increases
from g to i. The red lines between grains denote the contact forces.
Note the elliptic-like force propagation along the system. A zoom of
the injection area is shown to enhance the visualization. (Color figure
online)

stress evolution during the insertion of a single grain.
In the monodisperse case, we observe the heterogeneity of
the stress field, particularly the stress enhancement along the
fingers’ directions. The stress magnitude is larger in the cen-
ter because the grains are pushed from there, but we can
observe a kind of compression/decompression cycles. These
cycles could be associated to the sound propagation along
the sample, reflecting on the borders and coming back with
a period of around 200 time steps; thus, several cycles occur
during the injection of a single grain that takes 5000 time
steps to be concluded. In future works, we plan to address
this observation in a more detailed manner. The stress seems
to propagate from the center along two preferential direc-
tions. These results agree with the hyperbolic models of
stress propagation in anisotropic granular systems [24,25].
The instantaneous stress profiles of the polydispersed sample
have a circular pattern, with no preferential direction, but the
system works similarly as the monodisperse cases: in cycles
of compression/decompression where the stress in the center
increases and relaxes but alternates in random directions. In
this case, the stress propagation approaches to the predicted
by the diffusive models of stress propagation in isotropic
granular assemblies, showing a transition from the center to
the borders of the pattern.

3.2 Axial geometry

As already mentioned, we considered the axial geometry
(Fig. 6) with different assemblies of grains in the large
channel: monodisperse, bidisperse, and polydisperse (5%
dispersion). The injected grains are always of same type,
monodisperse. In Fig. 9, we show results for the interfaces
obtained using different assemblies of grains. It is interesting
to note that when the displacement assembly of grains used
was bidisperse, a symmetric diffusive-like pattern arose, and
tiny fluctuations were observed between the samples (here
we show results from five different samples of each prepa-
ration). The “wetting angle” (angle formed by the internal
tangent of the interface and the wall) is θb < 90, indicating,
on this analogy, the displacement of a more viscous fluid
into a less viscous one. If we consider now the results for the
polydisperse case, it is clear that a wetting angle θp > 90
is observed in all samples displayed, even that in this case
the interfaces are much more fluctuating. The analogy with
the fluid displacement clearly indicates the displacement of
a more viscous fluid displaced by a less viscous one. When
monodisperse assemblies are used, the profiles obtained are
analogous to the polydisperse case but, as shown in the
panel C of Fig. 9, in this case a strong elliptic-like propa-
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Fig. 10 a Profiles obtained along the displacement of the grains. We
show the grains considered as the front interface during the displace-
ment of a polydisperse sample. The pressure gradient ismeasured taking
the difference between the average stress calculated along the interface

in function of time. b Stress field obtained for a given interface in a
bidisperse sample. Note the gradient of stress along the interface. In
this case, we never observe fingers

Fig. 11 Left Evolution of the interface axis position with time for the three different assemblies considered. The results represent average over
five samples. Right corresponding velocity profiles for the same assemblies

gation of forces is observed, leading to finger formation due
the displacement on preferential directions. This preferen-
tial displacement implies that some regions of the substrate
remain stagnated, leading to high heterogeneity on the force
chains—Fig. 9 and stress fields—Fig. 10.

In order to quantify the viscosity of the displacedmedium,
and following the reasoning presented in the Sect. 2, wemea-
sured the stress field from the contact network using Eq. 1,
as shown in Fig. 10. We show in the left panel the grains con-
sidered as the interface for several instants of time. Then, we
measured the stress field along the interface, as shown in the
right panel, and its mean value is used to calculate the pres-
sure gradient—Eq. 4. The pressure is calculated as the sum
of the trace of the stress matrix, σnn + σt t , where n and t are
the normal and tangential directions, respectively. This value
is averaged along the interface between injected/displaced
grains, and the stress gradient is computed as the difference

between the value of the mean pressure at the time t and the
pressure at the beginning of the injection, t = 0, divided
by the mean radius of the interface. In order to calculate
the effective viscosity, we need to compute the mean posi-
tion of the interface, as shown in Fig. 11. We also show the
results for the mean velocity for all assemblies considered.
In all samples considered here we used the samemicroscopic
parameters, the only variation was in the assembly geometry
used in the displaced substrate, which can be then associated
with the effective viscosity measured.

Finally, we are now able to compute the effective viscosity
for each granular assembly. The results shown in Fig. 12 con-
firm our expectations, but only partially. As we can observe
in this figure, the bidisperse assembly presented the lowest
value for the effective viscosity, confirming its role as the less
viscousfluid from theprevious analysis basedonly on the pat-
tern formation. However, for our surprise, the polydisperse
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Fig. 12 Effective viscosity for different granular assemblies. FromEq.
3 we are able to estimate the effective viscosity for a given assembly.
The bidisperse case displays the lower effective viscosity opposing to
the polydisperse case

assembly presented the largest values for the effective viscos-
ity. And, differently to the mono and bidisperse assemblies
which became stiffer with time, analogously to the dilatant
regime for sheared fluids, the effective viscosity of the poly-
disperse assembly has decreased with time, analogously to
a shear thinning fluid. This behavior is rather unexpected for
granular assemblies, sinceweexpect that the increasingof the
contact network would lead to a hardening of the material.
However, for polydisperse assembly, we observe the con-
trary, a thinning of the system with time. Despite we do not
have a definitive explanation for this behavior,we believe that
it is linked with the fact that the force chains are short ranged
in time and space; so, after an initial hardening when the
force chains are initially formed, after a while, they became
broken leading to the decreasing of the medium resistance.
It interesting to note that all curves seem to converge to the
same asymptotic value; it is reasonable to expect once that,
as the time evolves, the injected grains will occupy the place
of the displaced grains; as the injected assembly used is the
same for all cases, we should expect that, asymptotically all
systems will behave analogously.

4 Conclusions

We report spontaneous pattern formation during the displace-
ment of grains considering different geometries and assem-
blies of grains. We confirm previous conjectures regard-
ing analogies between the displacement of grains and the
Saffman–Taylor fingering phenomena in immiscible fluids,
showing that the fingers develop along preferential directions
where the stress tensor is locally higher. Besides, using a

channel geometry, we are able tomeasure an effective viscos-
ity for granular assemblies, confirming that themonodisperse
case corresponds to a “more” viscous fluid compared to the
bidisperse assembly as the “less” viscous fluid. However, the
results for the effective viscosity for the polydisperse case
were very surprising for us, and we cannot furnish a satis-
factory explanation at this moment. To our knowledge, this
was the first measure of this type applied to granular assem-
blies and it opens new possibilities to explore the analogies
between the displacement of immiscible fluids and granular
materials. We expect to perform analogous measures using
different kinds of assemblies in order to systematically test
the procedure to quantify the effective viscosity. Another
defying perspective on this work is to perform the injection
using 3D assemblies, which could be particularly interesting
for applications in nature and industry, as oil extraction [52].
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