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In this Letter, we address the relationship between the statistical fluctuations of grain displacements
for a full quasistatic plane shear experiment, and the corresponding anomalous diffusion exponent α.
We experimentally validate a particular case of the Tsallis-Bukman scaling law, α ¼ 2=ð3 − qÞ, where q is
obtained by fitting the probability density function (PDF) of the displacement fluctuations with a
q-Gaussian distribution, and the diffusion exponent is measured independently during the experiment.
Applying an original technique, we are able to evince a transition from an anomalous diffusion regime to a
Brownian behavior as a function of the length of the strain window used to calculate the displacements of
the grains. The outstanding conformity of fitting curves to a massive amount of experimental data shows a
clear broadening of the fluctuation PDFs as the length of the strain window decreases, and an increment in
the value of the diffusion exponent—anomalous diffusion. Regardless of the size of the strain window
considered in the measurements, we show that the Tsallis-Bukman scaling law remains valid, which is
the first experimental verification of this relationship for a classical system at different diffusion regimes.
We also note that the spatial correlations show marked similarities to the turbulence in fluids, a promising
indication that this type of analysis can be used to explore the origins of the macroscopic friction in
confined granular materials.
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Turbulence is one of the most complex, but ubiquitous,
phenomena observed in nature and it is related to the
underlying mechanisms responsible for the micro-macro
upscale causing wide-ranging effects on classical systems,
like macroscopic friction in granular solids or turbulent
flow regime in fluids [1–4]. The presence of multiple scales
in time and space is an additional challenge to a compre-
hensive theoretical description, and a particular effort is
made in the literature to perform experiments and simu-
lations in order to validate the proposed theoretical
descriptions, particularly Tsallis nonextensive (NE) stat-
istical mechanics [5,6] as in the pioneering works of Sattin
[7] and Arevalo et al. [8].
A paradigmatic work relating anomalous diffusion and

turbulentlike behavior in confined granular media was
presented by Radjai and Roux [4], using numerical
simulations, and confirmed qualitatively by experiments
by Combe and collaborators [9,10]. Radjai and Roux
coined a new expression to characterize the analogies
between fluctuations of particle velocities in quasistatic
granular flows and the velocity fields observed in turbulent
fluid flow in the high Reynolds number regime, the
“granulence.” Most of the evidence of granulence is based
on simulations using the discrete element method (DEM)
but, unfortunately, there is a lack of quantitative

experimental verification recently, limiting the knowledge
of the micromechanics of this system.
In the present work, we aim to fill this gap with the

experimental validation of the results obtained by the DEM.
Specifically, we seek to examine the findings revealed
by Radjai and Roux [4] in a detailed fashion, extending
the previous works [9,10] to explore quantitatively the
relationship between the PDF of the velocity fluctuations
and the diffusion features of the grains. We follow a
detailed theoretical description for the anomalous diffusion
in the presence of external driving [11,12]. Particularly,
a relation between the q-Gaussian value from the PDF of
fluctuations and the diffusion exponent was proposed,
which is validated experimentally here for the first time
for a large range of the control parameter, improving on
previous works where this relation was tested only for a
single point [13,14].
In this work, we advanced in the route opened by Radjai

and Roux [4] with three basic goals: (i) Explore the low
inertial number limit.—The inertial number I [15] measures
the ratio between inertial and confining forces, from the
quasistatic regime (small values) to the dynamic regime
(large ones) [16]. We would like to check if the granulence
features are still observed in a better established quasistatic
situation, i.e., the experimental one which involves inertial
numbers around 4 orders of magnitude smaller than that
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currently reported in simulations [17]. (ii) Pinpoint the
origins of the macroscopic friction.—We take advantage
of the really quasistatic nature of the experimental data
to explore the origins of the underlying mechanisms of
granulence. Here, unlike fluid flow, the rigid particles
cannot fly freely since the motion of each particle is
hampered by the presence of the other particles, and
depends on the motion of its neighbors. This makes the
straining in part controlled by geometric exclusions at the
particle scale, preventing the development of a uniform
straining in a sustainable way. As shown in Ref. [9], at the
limit of large strain windows, it is possible to observe
turbulentlike vortexes in the fluctuation field, which turn
out to be associated with the energy dissipation and
macroscopic friction [18–20]. (iii) Evince the nonextensive
nature of the displacement fluctuations.—In order to
quantitatively analyze the data, the Tsallis NE statistical
mechanics approach was used. In this context, the PDF of
displacement fluctuations is not expected to follow the
normal Gaussian distribution, as in the case of classical
Maxwell-Boltzmann distribution in thermodynamics. In
granular systems under loading, the force chains engaged
along the entire system are a clear evidence of long-range
interactions [21]. These chains connect the microscopic
contact forces with the global resistance to external forces,
as in, for example, shear [22]. Thus, it is natural to associate
the emergence of these force chains at mesoscopic scales
with the departure from the classical Boltzmann-Gibbs
(BG) statistics in these systems.
In the experiment, we have foreseen the possibility to

quantify the degree of nonextensivity using the q-Gaussian
fit of the PDF obtained experimentally [9]. The striking
accordance observed on the fitted curves, and the depend-
ence observed of q as a function of the strain window used
to calculate the fluctuations, according to the reasoning
presented here, corroborates the application of the NE
statistical mechanics on these systems, opening an alter-
native approach to treat these systems quantitatively.
Besides, by measuring the diffusion of the particles along
the complete shear test, with different strain windows, we
are able to associate the q value measured from the
fluctuation PDFs with the diffusion exponent α. This is
a particular case of the Tsallis-Bukman scaling law [11]
(corresponding to the case μ ¼ 1 and q ¼ 2 − ν in the
original paper of Tsallis Bukman, which preserves the
norm, the physically consistent case),

α ¼ 2

3 − q
; ð1Þ

which can be obtained from the porous media equation
[12], a generalization of the classical diffusion equation
where the linear dependence between the variance and time
is no longer observed [23]:

∂pðx; tÞ
∂t ¼ Dq

∂2½pðx; tÞ�2−q
∂x2 : ð2Þ

For a Dirac delta initial condition, the solution reads as

pqðx;tÞ¼
1
ffiffiffiffiffiffiffiffi

πAq
p e

−ðx2=AqÞ
q ≡ 1

ffiffiffiffiffiffiffiffi

πAq
p

�

1− ð1−qÞ x
2

Aq

�½1=ð1−qÞ�
;

ð3Þ
where eqðxÞ is called the q exponential, and Aq is a constant
that depends on q and the Gamma function [6,12].
Equation (3) is known as the q Gaussian distribution, and

was used to fit the PDF of displacement fluctuations obtai-
ned experimentally. Figure 2 shows the results for the PDF
of fluctuations and the corresponding fit function at two
extremal values of Δγ considered in the image analysis.
In the case of anomalous diffusion, it is shown that the

variance follows a power law with time:

hx2i ∝ tα ≡ hx2i ∝ t½2=ð3−qÞ�; ð4Þ
where α is the diffusion exponent equivalently expressed as
a function of q by using Eq. (1). Note that, in Eqs. (2)–(4),
x stands for a fluctuation of displacement as we will see
below. It is interesting to observe two special cases: when
q ¼ 1, the variance is proportional to time, which corre-
sponds to the normal diffusion behavior; when q ¼ 2, the
ballistic diffusion limit is reached. At intermediate values,
we get large distributions with marked tails. The variance,
calculated as the time integral of pq, diverges for q > 5=3,
and converges otherwise. Thus, if several independent
convolutions are applied, pq approaches a Gaussian dis-
tribution if q < 5=3, and it approaches a Lévy distribution
for q > 5=3 [6].
We performed quasistatic simple shear tests [24] with the

1γ2ε apparatus,which is fully described inRefs. [25,26]. The
granular packing is made of pilings of cylindrical rods that
mimics a 2D granular material enclosed by a rectangular
frame, with initial dimensions of 0.56 × 0.47 m. Then, the
vertical sides of this rectangular parallelogram are shortened
or elongated to apply a constant normal stress in the vertical
direction, σn ¼ 50 kPa. These two vertical sides are tilted up
to γ ¼ 15°while the two other sides are kept horizontalwith a
constant length; see Fig. 1. The packing was made of 5471
wooden rollers (6 cm long) with ten different diameters
ranging from 3 to 30 mm, approaching a uniform distribu-
tion. To ensure a quasistatic transformation of the sample,
it is sheared very slowly—the corresponding shear rate _γ is
4.5 × 10−5 s−1. This ensures a very small inertial number
[16] (I ¼ 10−9) when compared to what is applied in DEM
simulations (10−3 to 10−5 in the best cases) [17,27]. During
the test, kinematics of grains are measured by means of
digital image correlation (DIC) [28,29] from 80 Mpixel
digital images of the sample where rollers look like disks,
Fig. 1. A specific DIC computer program was developed
to track rollers here assumed as rigid bodies [10], which
allowed a subpixel kinematics measurement to track grains
with an error of �0.05 pixels [30].
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At the macroscopic level (sample scale), the stress-strain
curve measured during the shear test exhibited hardening
up to γ ≈ 0.06 followed by softening until the end of the
test (curve shown in Ref. [10] as well as several other
mechanical properties like the peak stress ratio, macro-
scopic friction angle, etc.). Pictures were shot every
δt ¼ 5 s throughout the test, corresponding to a shear
strain increment Δγ ≡ δt_γ ≈ 2.4 × 10−4 between each shot.
To assess the displacement fluctuations, we consider two
displacements of each particle during a shear incrementΔγ.
The first is the actual displacement δrðγ;ΔγÞ from γ to
γ þ Δγ. The second displacement, δr⋆ðγ;ΔγÞ, is fictitious
and corresponds to an affine motion resulting from an
homogeneous straining at γ and during the shear-increment
Δγ. It is assessed from the motion of the four rigid sides of
the apparatus 1γ2ε. With these definitions, the fluctuating
part of the displacement is the difference between the actual
and affine displacements. Thus, the normalized displace-
ment fluctuation vðγ;ΔγÞ is defined by

vðγ;ΔγÞ ¼ ½δrðγ;ΔγÞ − δr⋆ðγ;ΔγÞ�=d
Δγ

; ð5Þ

where d is the mean diameter of the rollers. One may notice
that the normalized fluctuations can be interpreted as a local
strain (grain scale, numerator) compared to the global strain
(sample scale, denominator).
A displacement fluctuation field v is plotted in Fig. 1 for

a given shear increment. One can notice an organization in
structures like vortexes, reminiscent of those observed in
the turbulence phenomena in fluids. These structures found
their origins in the rearrangement mechanism of the grains,

since the elements interfere with each other in their affine
movement. This is, in other words, the deviation from the
affine field due to steric exclusion forming patterns
observed with discrete element modeling [15,31,32] and
more rarely in experiments [19]. Their dynamics depend
both on γ and Δγ, evolving gently under shear when Δγ is
large (> 0.04) and very rapidly for small values
(Δγ ≃ 2.4 × 10−4). The characteristic lengths depend
strongly on Δγ, with vortexes of a few tenths of mean
grain diameter for large values of Δγ, and, to the contrary,
for small values of Δγ these structures are not well defined,
and long-range correlations are observed [10].
The PDFs of the horizontal component magnitude of

normalized displacement fluctuations are shown in
Fig. 2 for two different increments of shear strain: Δγ ¼
7.3 × 10−4 andΔγ ¼ 10−1. We observe a broadening of the
PDF from a nearly Gaussian distribution (for large Δγ) to a
wider distribution (for small Δγ).
The dependence of the q exponent with the strain

window used to calculate the fluctuations is shown in
Fig. 3 for experimental and simulation data. Two remark-
able features can be observed in this plot. First, in the limit
of a large strain window, when the abscissa goes to zero,
q → 1, indicating the limit when normal diffusion and the
BG statistics are satisfied. Note that it is possible to test
larger values of Δγ in DEM simulations which confirm the
limit q → 1 (data shown in the inset of Fig. 3). This is
exactly what we expect for this limit, once the particles
typically experience several collisions and rearrangements,
approaching to the molecular chaos hypothesis.
Second, at the other limit, for a vanishing strain window,

the q value attains a plateau, with q ∼ 3=2. This observation
can be interpreted as a sign of the long-range correlations
imposed by the force chains at this short time scale. Once
the value measured for q in this limit is lower than 5=3,
one can expect that for large strain windows a Gaussian

FIG. 1 (color online). The fluctuating part of the rod displace-
ment vðγ;ΔγÞ overplotted on the corresponding digital image,
obtained from DIC. γ ¼ Δγ ¼ 0.1. Inset: a detailed view of the
speckled rods. γ and σn are the shear angle and the vertical stress
imposed, respectively. The shear strength is measured all along
the shear test.

10-5

10-4

10-3

10-2

10-1

100

10-3 10-2 10-1 100 101 102

P
D

F

| υx |

Δγ = 7.3 × 10-4

Δγ = 0.1
fitted with q = 1.53
fitted with q = 1.22

FIG. 2 (color online). Probability density functions of the
horizontal components of the fluctuating displacements tracked
during two different increments of shear strain (Δγ ¼ 7.3 × 10−4

and Δγ ¼ 10−1). The scatters correspond to experimental data,
and the solid lines correspond to regressions of function pq

[Eq. (3)] that allow for assessment of the q values.
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distribution would be recovered, since it corresponds to
successive independent convolutions of q-Gaussian
distributions.
These features were observed both in experiments and

simulations, no matter the differences among the systems
(periodic boundaries in horizontal direction in simulations,
different number of particles, and inertial numbers, etc.),
proving the robustness of the result.
Analyzing the results as a whole, we can sketch a

phenomenological scenario to explain the observations:
in the limit of largeΔγ, we observe a tendency to agree with
the BG statistics, with q → 1. This limit corresponding to
the transition from meso- to macroscopic scales, and the
formation of vortexes in the spatial distribution of fluctua-
tions, as shown in Fig. 1. These vortices, with few grain
diameters in size, interact with each other to dissipate the
excess energy due to external loading, in analogy with
the role of vortices in turbulent flow [4]. The broadening of
the distribution of displacements fluctuations is usually
attributed to the energy cascade from larger to lower scales,
that is, from large vortexes to the small ones [4]. More
similarities between turbulence in fluids and granulence
are explored in Refs. [4,9].
On the other hand, we have q≃ 3=2 for the vanishing

strain-window’s limit, Δγ → 0. This result indicates the
presence of long-range interactions and anomalous diffu-
sion. Considering the absence of spatial structures on the
fluctuation field, it is clear that this limit is dominated by
the force chain dynamics. Force chains can span all along
the system, but are very fragile, implying short lifetimes.
The displacement of grains belonging to a force chain is
strong correlated spatially, but this correlation is not
verified for large temporal scales.

Thus, we can conclude that the window used to measure
the PDF particle displacement fluctuations in the system
plays a crucial role in the statistics that will be obtained.
Basically, it is possible to explore the micro-macro tran-
sition on the PDF distributions, from a correlated regime
dominated by the force chains to a frictional stochastic one,
dominated by spatial vortex interactions. This conclusion
has a striking implication for any analysis concerning the
measuring of displacement fluctuations, since it unveils
how the observation procedure can alter the conclusions
even in a relatively simple diffusion experiment. Similar
behavior could be observed in other systems which display
long-range spatial correlations, externally driven with
different frequencies, quite a common situation.
To quantify the diffusion of the grains along the complete

shear test we simply computed the average displacement
of each grain as a function of time (shear increment γ),
but with different sampling frequencies determined by the
strain-window Δγ. Following the reasoning presented
above, and Eq. (4), we should expect two extreme regimes

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0  10  20  30  40

1 / γΔ⎯⎯√

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0  20  40  60

q

1 / γΔ⎯⎯√

q
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(Inset) a typical diffusion curve showing the mean square
displacement fluctuations hx2i in a function of the shear strain γ;
it allows the assessment of the diffusion exponent α for each
strain window tested. In the case shown, it corresponds to the
smallest strain window, the rightmost point in the curve at the
main panel. Note that for a constant strain rate, γ is proportional
to time. (Bottom) Measure of the deviation of the data relative to
the scaling law prediction, as a function of 1=
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, showing an
agreement on the order of �2%.
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for the diffusion, analogously to that observed for the q
value: an anomalous diffusion regime with α ∼ 4=3 for the
vanishing strain window, and an asymptotic regime with
α → 1 for large shear increments. This is indeed what we
can observe in Fig. 4, where we have verified the Tsallis-
Bukman scaling law [Eq. (1)]. It is important to stress that
the dashed line in Fig. 4 is not a direct fit, but rather the
curve obtained in Fig. 3 using the Tsallis-Bukman scaling
law. To our knowledge, it is the first time that this relation
is verified for different regimes of diffusion. This striking
result reinforces the use of the Tsallis NE statistical
mechanics to describe strongly correlated systems, as in
the case of confined granular material under shearing.
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