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A b s t r a c t

This article presents a multi-scale modelling approach of cohesive
granular materials, its numerical implementation and its results. At mi-
croscopic level, a Discrete Element Method (DEM) is used to model dense
grains packing. At the macroscopic level, the numerical solution is obtained
by a Finite Element Method (FEM). In order to bridge the micro and macro
scales, the concept of Representative Elementary Volume (REV) is applied,
in which the average REV stress and the consistent tangent operators are
obtained in each macroscopic integration point as the results of DEM’s sim-
ulation. In this way, the numerical constitutive law is determined through
the detailed modelling of the microstructure, therefore taking into account
the nature of granular materials. We first elaborate the principle of the com-
putation homogenisation (FEM × DEM), then demonstrate the features of
our multi-scale computation in terms of a biaxial compression test. Macro-
scopic strain localization is observed and discussed.
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1. INTRODUCTION
Numerical modelling is widely used to investigate geophysical and geotechni-
cal problems. The Finite Element Method (FEM) (Zienkiewicz 1979), which
is based on a continuum approach, can be applied. This method is appropriate
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for a wide range of applications (cliff stability, soil mechanics, etc.). For exam-
ple, earth structures specifically made of granular materials are very common
(Chevalier et al. 2011). Granular media are discontinuous and heterogeneous
by nature. Such materials generate complex mechanical responses when sub-
jected to small (Atman 2009) as well as large deformations (Lanier 2001, Szarf
2011). Unfortunately, it is difficult to realistically model the discrete nature of
granular matter by FEM. Conversely, the Discrete Discrete Element Methods
(DEM) has been especially developed to model the granular materials at the
particle scale. This numerical method consists in taking into account contacts
between rigid bodies and in integrating the equations of motion for each grain to
obtain the response of an assembly of particles (Cundall and Strack 1979). The
granular media is modelled at the contact scale and then, their discrete nature
is captured.
It is known that the mechanical behaviour of granular soils take its origins at the
grain scale (inter-granular contact behaviour, contact network and its evolution,
packing fraction, ...) hereafter called the microstructure. The mathematical and
the numerical description of a two-scale relationship between the microstruc-
ture and the macroscopic mechanical behaviour is an essential issue. Recently,
several authors have proposed multi-scale approach with various strategies. On
one hand, Feyel and Chaboche (2000), Kouznetsova et al. (2001, 2002) and
Feyel (2003) suggest to model the behaviour of the microstructure via a FEM
approach, coupled with another FEM modeling at the macroscale. This tech-
nics is known as a FEM2 approach. On the other hand, some other authors
develop strategies to build mechanical equivalent laws with DEM numerical
modeling of the microstructure, Miehe and Dettmar (2003), Meier et al. (2007)
and Miehe et al. (2010).
In this paper, we propose a new multi-scale numerical homogenisation approach
by closely combining FEM and DEM to study the behaviour of cohesive gran-
ular materials. The microstructure of the granular soil is modelled by using
the DEM approach on a Representative Elementary Volume (REV) made of
few grains. At the large scale (earth structure), the FEM approach is used.
In this way, the overall earth structure is modelled by a FEM approach. The
constitutive mechanical behaviour used at each integration points of the mesh
comes from the behaviour computed with DEM of a REV and not from a mathe-
matically formulated phenomenological law. The micro (DEM) and the macro
(FEM) scales are bridged by a numerical homogenisation process described
hereafter in the paper.
In fact, due to friction, the behaviour of granular media is essentially non-
elastic, and strain history dependent which means that the stress at some in-
stant depend not only on the strain at that instant but on the whole history of
strain up to it. The boundary value problems (BVP) involving solids presenting
such a behaviour are therefore evolution problems. Very often, those evolu-



FEM-DEM modelling of cohesive granular materials 3

tions are slow enough so that inertial effects can be neglected and the evolution
is quasi-static which means that at any time the medium is in equilibrium. The
numerical resolution of this type of problem is usually performed using a time
stepping discretisation. In this method, the equilibrium equations are written at
each time step, and the constitutive law is integrated through a specific method
adapted to the law (see for instance Simo and Hughes (1998) for elastoplastic-
ity). That yields an “integrated” constitutive equation: εn → σn giving the
stress at the end of the step n in terms of the strain at the end of the same step
and therefore looking like an elastic, generally non linear, constitutive equation.
The problem to be solved at time step n is a nonlinear elastic-like equilibrium
problem, generally solved using the Newton’s method. The standard Newton’s
method requires the differentiation of the integrated law which leads to the no-
tion of consistent tangent operator (for elastoplasticity, see Simo and Hughes
(1998)).
In the FEM × DEM approach, the macroscopic constitutive equation of the
equivalent continuous granular medium is obtained through the DEM simula-
tion of the motion of the grains in a REV subjected to a history of macroscopic
strain. The integrated law of each time step is then directly the constitutive
equation of the continuous medium for a macroscopic strain path completely
determined by the strain at the end of the step. In this case, the numerical differ-
entiation, which seems to be the only way to get the consistent tangent operator
of the integrated law on a time step, may pose problems in some cases. Then,
a variant of Newton’s method is used, either by keeping the linear operator of
all the time step and all the iterations equal to the elastic one of initial REV or
by computing at each iteration of the Newton’s method of a given time step the
homogenized linear elastic constitutive equation of the current REV, the set of
contacts between grains of which has been fixed.
The paper is organized as follows. Section 2 presents the homogenisation meth-
ods to bridge the scale between micro- and macro- level. Section 3 describes
the numerical model by DEM. Some numerical results obtained with the multi-
scale computation (FEM × DEM) is demonstrated in section 4.

2. HOMOGENISATION METHOD
The framework of multi-scale coupling method is described in Fig.1. At the
macroscopic level, a quasi-static finite strain continuum formulation is consid-
ered. The resolution of BVP through FEM requires a consitutive law at each
integration point of the mesh which expresses the stress (σij) as a function of
the history of displacement gradient (hkl) as follow:

σij(t) = Γ t{hkl(τ), τ ∈ (0, t)} (1)
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Fig.1 Computational homogenisation scheme (Nguyen et al. 2013)

In order to capture the main effects of granular materials, a numerical ho-
mogenisation method by DEM computation is used to build the constitutive law.
In this way, for a given history of macroscopic displacement gradient hkl, the
macroscopic Cauchy stress σij results from microscopic forces between grains
through a well etablished homogenisation formula (Weber 1966):

σij =
1

S
·
∑

(n,m)∈C

~f m/n ⊗ ~r nm (2)

Where S in 2D case is the area of the microstructure; ~f m/n and ~r nm are re-
spectively the contact forces acting in contact c = (n,m) and the branch vector
~r nm joining the mass centre of two grains (n,m) in contact.
The numerical integration of constitutive law requires to solving a nonlinear
system of equations when the mechanical behaviour is nonlinear which is the
case for granular materials. In order to solve the non-linear system of equations,
an incremental-iterative strategy Newton-Raphson method is adopted. This re-
quires the implementation of a consistent tangent matrix in the numerical inte-
gration scheme as defined in the equation eq.(3):

Cijkl =
dσij
dhkl

(3)

Then, the consistent tangent operators computed from the stress state at the end
of the load step are consistent with the algorithm of integration used. Any in-
consistency between the tangent operator and the algorithm of integration of the
constitutive law will spoil the quadratic convergence of the Newton-Raphson
method. Moreover, the more this operator represents the mechanical behaviour
of granular media, the faster the iterative process converges to the solution.
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The consistent tangent operators can be found analytically for simple laws, but
for more complex laws, a numerical differentiation has to be adopted. We de-
scribe here this numerical procedure: the consistent tangent operator is evalu-
ated in two steps.
For an increment of displacement gradient δhkl, we perform a first step in which
we compute the stress at the end of this increment, noted σij(δhkl). Then we
consider perturbed increments of displacement gradient δhkl + ε ·∆mn

kl . Here ε
is a small parameter and ∆mn

kl is a second-order tensor such that its components
are defined as:

∆mn
kl = δmk · δnl (4)

with the Kronecker symbol δmk =

{
1 if m = k
0 if m 6= k

. In two dimensional case:

k, l,m, n = 1, 2.
Finally, the results of these two steps allow for the determination of consistent
tangent operator:

Cijkl =
σij(δhkl + ε ·∆mn

kl )− σij(δhkl)
ε

(5)

This procedure is performed in every time step and in every Gauss point of the
macroscopic finite element discretization. At the beginning and the end of each
step, the REV is in a state of equilibrium.

3. MICROSCOPIC DEM MODEL
The numerical approach used to model the REV of granular material is the Dis-
crete Element Method (DEM) using bi-Periodic Boundary Conditions (PBC)
(for details see Radjai and Dubois 2011). The REV of grains is a dense packing
of 400 polydisperse circular 2D particles in which grains radii are uniformly
distributed between Rmin and Rmax such that Rmax/Rmin = 5/2, Fig. 2(a).
All grains interact via linear elastic laws and Coulomb friction when they are in
contact. The normal repulsive contact force fel is related to the normal apparent
interpenetration δ (Fig. 2(b)) in the contact as fel = −kn · δ, where kn is a
normal stiffness coefficient (δ < 0 if a contact is present, δ = 0 if there is no
contact). In order to model a cohesive material, a local cohesion is introduced
for each contact by adding an attractive force fc to fel; fc < 0 is here chosen
constant for each pair of particles in contact. Thus, the overall normal force in
a contact is fn = fel + fc. A degradation of the cohesion is taken into account
by considering a vanishing of fc when a contact separation occurs. If a new
contact is created during the deformation process of the REV, then the local
cohesion remains nil (un-recoverable cohesion). That give “fragility property”
to the assembly of grains such that it models brittle materials.
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The tangential contact force ft results from an accumulation of increments
∆ft = kt ·∆ut computed at each time step (∆ut is the tangential relative dis-
placement in the contact and kt is the corresponding tangential stiffness). The
Coulomb condition is considered using the following inequality |ft| ≤ µ · fel,
which leads to some amount of slip (Cundall and Strack 1979).

(a) (b) (c)

Fig.2 (a) Assembly of 400 particles (grey discs) submitted to an isotropic pressure σ0.
White grains in (a) are images of the grey discs to illustrate the bi-periodic boundary
conditions. Contact between two grains: (b) overlapping δ between discs, (c) normal
fn and ft tangential contact forces.

The numerical/mechanical parameters need by DEM require specific values.
In the present study, kn is such that the rigidity level κ defined by Combe et
Roux (2003) is κ = kn/σ0 = 1000, where σ0 is the 2D confining pressure.
kt is choosen like the stiffness ratio is kn/kt = 1. The cohesive force fc is
defined with reference to the confining pressure as suggested by Gilabert et al.
(2007): p∗ = fc/(a · σ0) where a is typical diameter of grains. So p∗ is a ratio
measuring the attractive part of a contact force versus the repulsive part due to
particle interpenetration. Hereafter p∗ = 1. The inter-granular angle of friction
is µ = 0.5. All parameters are summarized in table 1.
The contact friction and the contact cohesion give macroscopic mechanical fail-
ure properties to the REV, i.e., an internal angle of friction ϕ and an overall
cohesion C. To evaluate these two mechanical parameters at the REV scale,
one way is to perform a “pure” DEM computation of a mechanical test like a
Biaxial test (vertical compression with an imposed vertical constant strain rate
ε̇1 and a constant lateral stress σ2 = σ0). Thus, a biaxial test is performed on
a REV in which each contact is initially cohesive. ε̇1 is chosen such that the
strain process of the REV can be considered as a quasi-static process (Inertial
number I < 10−4; Radjaï & Dubois 2011). The evolution of the strength of
the REV and its volumetric evolution are shown on Fig. 3(a). One can notice



FEM-DEM modelling of cohesive granular materials 7

T a b l e 1 Microscopic parameters
Parameter Value

κ = kn/σ0 Stiffness number 1000

kn/kt Stiffness ratio 1

µ Intergranular friction coefficient 0.5
p∗ Cohesion number 1

0

0

1

2

1 2 3 4 5 6 7 8

1

2

3

4

5

0

(a) (b)

Fig.3 Biaxial test (vertical compression) computed by means of DEM on a REV of
400 particles: (a) Mechanical response of the REV. The curve with the square symbols
is the evolution of the deviatoric stress normalized by the confining pressure (σ1 −
σ2)/σ0 with the vertical strain ε1. The curve with the star symbols is the evolution
of the volumic strain (εv = tr (ε)) with the vertical strain. (b) REV deformed, ε1 =
3%. Contact forces are displayed with the following convention: the width of the lines
joining the centres of two particles in contact is proportional to the normal force. Red
and green lines distinguish respectively (fc 6= 0) and (fc = 0).

that whereas the lateral stress is kept constant during the vertical compression
(σ2 = σ0), the vertical deviatoric stress σ1 − σ2 reaches a peak for ε ' 0.6%
and decreases to a plateau (ε > 4%). Concerning the volumetric strain εv, one
can observe that the REV is essentially dilative (soil convention is used, ε > 0
for compression).
The Mohr – Coulomb failure criterion is widely applied for cohesive granular
materials. With this criterion, the maximum strength is ruled by the Coulomb
equation τ = σn tanϕ + C, with two phenomenological intrinsic parame-
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ters: a macroscopic cohesion parameter C and an internal friction angle ϕ.
In the following, these parameters are determined with two biaxial tests: one
in compression (see Fig. 3(a) for the associated stress evolution) and another
one in extension (stress evolution not shown in this paper). Furthermore, de-
pending on the strain level ε1, two set of mechanical parameters are measured:
{ϕ,C/σ0}p for the maximum strength (ε ' 0.6%) and {ϕ,C/σ0}t for large
strains (ε > 4%). The corresponding stress states are shown with Mohr cir-
cles on the Fig. 4. At the stress peak (ε ' 0.6%), circles I and II gives
{ϕ,C/σ0}p = {25o, C/σ0 = 0.3} (Fig. 4(a)). When ε > 4%, one should
notice the vanishing of macroscopic cohesion {ϕ,C/σ0}t = {25o, C = 0}
(circles III and IV on Fig. 4(b)). This last observation is related to the un-
recoverability of the cohesion at the contact scale. One may notice that the
angle of friction ϕ does not depend on the strain level.

II

I

III
IV

(a) (b)

Fig.4 Mohr – Coulomb analysis of two biaxial tests. Circles I and III correspond
to two stress states for biaxial test in compression. Circles II and IV show two stress
states during the biaxial test in extension. Circles I and II correspond to the stress state
for the maximum strength, for the two biaxial tests. Circles III and IV show the stress
state for large strains, in the two biaxial tests. Bold lines shows the Coulomb criterion
failure, with friction and cohesion on the left and only friction on the right, the one on
the left recalled the one on the right figure with a dashed line.

4. MULTISCALE FEM × DEM SIMULATION
The FEM × DEM approach was implemented in the FEM code Lagamine
(Charlier 1987) which is able to manage finite strains. The implementation in-
volved significant modification in the original code, but it essentially consisted
in adding the DEM modelling as a constitutive numerical law.
To highlight the capabilities of this new FEM×DEM approach, we present here-
after a two-scale modeling of a Biaxial vertical compression test. The granular
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Gauss point
node

Fig.5 Q8 Element and the REV associated to each Gauss point to obtain the numerical
behaviour law. The REV is submitted to an isotropic loading : all normal contact forces
fn are positives (fn = fc +fel > 0) and every contact is cohesive (fc < 0, |fc| < fel).

sample is spatially discretized using a continuum mech made of Q8 elements
(8 nodes per element, 4 Gauss points per element, Fig. 5). As in some experi-
ments (Desrues (1984), Desrues and Viggiani (2004)), the sample has initially
an aspect ratio of 2. At the boundaries of the mesh, specific kinematic and static
conditions are chosen (see Fig. 6 and its caption for details). These conditions
are identical to those used, for example, in some 2D experiments (Richefeu et
al. 2012).
At micro-scale – at the Gauss points – a REV of 400 particles (chosen identical
for each Gauss point at the start of the modelling, although different REV may
be considered as well without adding complexity in the computation) is used.
In this REV, the contact laws between particles are those detailed before. At
the start of the FEM×DEM simulation, the external loading exerted on the FE
mesh is isotropic. Thus, going down to the micro-scale, in each Gauss point, the
REV is isotropically loaded and all contacts are compressive but with adhesion
(Fig. 5).

4.1. Macroscopic results
The mechanical strength evolutions of the granular material simulated via the
FEM × DEM approach and with “pure” DEM are shown on the Fig. 7. This
figure shows the deviatoric stress q = σ1 − σ2 normalized by σ2 as a function
of axial deformation ε1.
The first remark is that this mechanical behaviour is typical of what is classi-
cally observed with a laboratory drained triaxial test on dense cemented sands,
or weak sandstones: from the isotropic state (q = 0), the deviatoric stress q
increases until it reaches a peak corresponding to the maximum strength of
the material (hardening phase). It is remarkable that whatever the numeri-
cal method used (FEM×DEM with different meshes, pure DEM with differ-



Nguyen et al.10

1

2

a. FD64: FEM×DEM b. FD128: FEM×DEM c. FD106: FEM×DEM
with 64 Q8 elements with 128 Q8 elements with 106 Q8 elements

Fig.6 Spatial discretization of the granular soil for the FEM×DEM modeling. Three
kind of mesh are tested: (a,b) structural mesh and (c) non-structural mesh. The vertical
Biaxial compression uses identical boundary conditions for (a), (b) and (c). On the
right of the mesh, we apply a constant lateral stress σ2 = σ0. On the top, an increment
of displacement δ is imposed. On the left, nodes can vertically move without friction.
Finally, on the bottom of the mesh, an horizontal “lubrication” is applied because nodes
can only move horizontally. On may notice that the node on the left-bottom, in blocked.

ent grain numbers), the hardening phase is observed to be almost the same
(ε < 0.3%). Afterward, one can see a softening behaviour (stress drops down)
until q reach a plateau in the FEM×DEM simulation as well as for “pure” DEM
computations as soon as the number of particles is large enough (≥ 22500).
This softening is observed to be “computational method dependent” i.e. the
post-peak response depends on the details of the method used; however, for
each numerical approach (FEMxDEM on one hand, pure DEM on the other
hand), the final parts of the different curves seem to tend to a unique for each
numerical approach, seems to converge to a unique curve when the number
of elements is increased (number of Q8 for the FEM×DEM and number of
particles for “pure” DEM). This is consistent with previous research works by
Chambon et al. (1998) and Matsushima et al. (2002).
The softening (post-peak response of the specimen, 0.6% < ε < 3.5%) ob-
served with FEM×DEM is more pronounced if compared with purely DEM
computation for one main and important reason: strain localisation. Not sur-
prisingly, strain localisation occurs in the multi-scale FEM × DEM approach.
In Fig.8 (a, b, c), the local distortion of the mesh shows clearly a shear band in
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Fig.7 Macroscopic response of multi-scale FEM×DEM computations (bold line and
white symbols) and “pure” DEM (black symbols) for a vertical Biaxial compression.
FDxxx denotes FEM×DEM computations with xxx

the specimen, confirmed on the Fig.8 (d, e, f) by the map of the deviatoric strain
(εD = εI − εII ). Due to strain localisation, deformation is concentrated in this
narrow zones (called shear band) (Desrues and Chambon 2002) ; a given in-
crement of top boundary displacement is no more accommodated by an overall
strain in the whole specimen, but by a much faster shear deformation process
in the band. In experimental tests, localisation occurs as well (Bésuelle et al.
(2000), Desrues and Viggiani (2004)), and the seek for a proper modeling of
strain localisation has been a crucial research objective for three decades now.
For FEM×DEM, the peak stress can be associated to a “sudden” localisation
of the strains into a shear band. However, whereas FD106 and FD128 q vs.
ε1–curves are almost superposed, FD64 softening phase is different probably
because of Q8 shapes used (see Fig. 6) that constraints more (geometrically)
the shear band.
Shear bands are also observed in “pure” DEM computation. Strains do not lo-
calizes “suddenly”, they develop gradually, as already observed by Szarf et al.
(2011). Fig. 9 shows maps of the second invariant of the strain tensor in sam-
ples of difference sizes, for ε1 = 5%. Whereas the REV of 400 grains do not
show shear banding, strain localisation in bands can be seen in samples with
6400 particles. These shear bands are even more obvious in the DEM com-
putation on sample of 22500 and 40000 particles. One may notice that even
if Periodic Boundary Conditions are used in “pure” DEM computations, not
only the localisation of deformation is observed. One may notice that, despite
Periodic Boundary Conditions computations, still localisation of deformation
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Fig.8 (a, b, c): maps of the initial and the deformed mesh (top), (d, e, f): maps of
second invariant of strain tensor when ε1 = 3%. (bottom).

is observed; however, the resulting shear bands have to respect the periodic-
ity condition, which is an artificial and non realistic constraint on shear band
patterns. For this reason, no attempt is made to use microscopic shear band
orientation in an upscaling process toward the macroscopic scale.
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(a) (b)

(c) (d)

Fig.9 Maps of the local second invariant of the total strain tensor εD (shear intensity)
computed on sample of (a) 400, (b) 6400, (c) 22500 and (d) 40000 particles submitted
to a biaxial loading. ε1 = 5%. Local εD is computed for triplet of grains (Delaunay
triangulation), using the approach suggested by Calvetti et al. (1997).

4.2. Microscopic analysis
In order to highlight the advantage of our methods and to understand the origin
of macroscopic phenomena, which comes from the microscopic evolution, in
this section, we propose to analyze the stress evolution in various Gauss points
at different location in the mesh. The mesh of 128 elements Q8 is chosen for
this analysis. The focus is on the Gauss points into Q8 no 46 and Q8 no 52 (see
Fig.8b). The element 52 is located in the shear band whereas the element 46 is
far from the shear band, in a homogeneous zone.
Fig.10 shows the evolution of principal stresses (PS hereafter) (minor and ma-
jor) in the two elements. As for the major PS, we observe that their respective
evolutions diverge once the maximum shear strength is reached. The stress
variations are rather smooth in element 46 and noisy in 52. Both 46 and 52
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Fig.10 Microscopic analysis: Principal stress in elements 46 and 52 (ε11 is the equiv-
alent overall axial strain for the specimen).
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Fig.11 Microscopic analysis: Principal direction in element 52 (ε11 is the equivalent
overall axial strain for the specimen).

show stress reduction, which is consistent with the softening of the specimen
as a structure: despite the degradation of the material’s properties is concen-
trated in the shear band, it results in a fall of stress in the whole specimen as
soon as the band becomes the overall failure mechanism. The minor PS shows
the same trend with respect to smoothness. Within the shear band, not only PS
values but also PS directions (Fig.11) show some scatter in time. Clearly, the
shear band becomes the only active part of the specimen once localisation has
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a. Gauss 1 b. Gauss 2 c. Gauss 3 d. Gauss 4

Fig.12 REV deformed at Gauss point of element 46 at global specimen strain ε11 =
3%. (See Fig.3(b) for color convention).

a. Gauss 1 b. Gauss 2 c. Gauss 3 d. Gauss 4

Fig.13 REV deformed at Gauss point of element 52 at global specimen strain ε11 =
3%. (See Fig.3(b) for color convention).

started; in this active zone, the deformation process is intensive and produces
large micro-structural reorganization with severe scattering in the local stress.
In Fig.12 and Fig.13, the REV at deformed state are plotted. All the Gauss point
have the same initial configuration (Fig.5) but the deformed configurations in
the different Gauss points become different as the deformation progresses, and
quite different at the end of the test, especially within the shear band. All the
REV in the element 46 remain similar to the initial state with only one or two
contact losing cohesion, while the REV in the element 52 is subjected to a com-
plex loading at each REV (both compression and shear loading, see the shape
of REV) while a degradation of cohesion forces is observed throughout these
REV (contacts without cohesion are illustrated by the green line). We can con-
clude that in the shear band zone, the strain localisation leads to a generalized
inter-granular cracking.

5. CONCLUSION
A multi-scale approach to investigate the behaviour of cohesive granular materi-
als has been presented, combining DEM at the micro level with FEM modelling
at macroscopic level. A numerical homogenisation method is used to bridge
the gap between different scales. At small scale level, kinematics condition is
applied at each REV with PBC. The mean stress is recovered together with the
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consistent tangent operators to construct the macroscopic constitutive law. This
new method allows us to obtain the overall behaviour of geomaterials together
with the micro mechanism inside REV at every point in the FEM mesh. The
DEM code has been successfully implemented in a large strain finite elements
code Lagamine. Using this numerical tool, some results from biaxial test simu-
lation were presented and analyzed. Strain localisation has been observed. The
mechanical response of cohesive granular materials was investigated both at the
macro- and microscopic level. Moreover, local stress evolutions, and the inter-
granular cracking at micro level (REV) have been highlighted to understand the
origin of the macroscopic behaviour.
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