
Powder Technology 208 (2011) 279–288

Contents lists available at ScienceDirect

Powder Technology

j ourna l homepage: www.e lsev ie r.com/ locate /powtec
Polygons vs. clumps of discs: A numerical study of the influence of grain shape on the
mechanical behaviour of granular materials☆

K. Szarf, G. Combe ⁎, P. Villard
Université de Grenoble, Laboratoire Sols, Solides, Structures, Risques (3SR) UJF, G-INP, CNRS UMR 5521, Domaine Universitaire BP53 38041 Grenoble Cedex 9, France
☆ This paper was written as part of a CEGEO re
granuloscience.com/CEGEO/).
⁎ Corresponding author.

E-mail address: gael.combe@ujf-grenoble.fr (G. Com

0032-5910/$ – see front matter © 2010 Elsevier B.V. Al
doi:10.1016/j.powtec.2010.08.017
a b s t r a c t
a r t i c l e i n f o
Keywords:

Granular materials
DEM
Grain shape
Clumps of discs
Polygons
Shear localisation
We performed a series of numerical vertical compression tests on assemblies of 2D granular material using a
Discrete Element code and studied the results with regard to the grain shape. The samples consist of 5000 grains
made from either 3 overlapping discs (clumps— grainswith concavities) or six-edged polygons (convex grains).
These two grain type have similar external envelope, which is a function of a geometrical parameter α.
In this paper, the numerical procedure applied is briefly presented followed by the description of the granular
model used. Observations and mechanical analysis of dense and loose granular assemblies under isotropic
loading aremade. Themechanical response of our numerical granular samples is studied in the framework of the
classical vertical compression test with constant lateral stress (biaxial test). The comparison of macroscopic
responses of dense and loose samples with various grain shapes shows that when α is considered a concavity
parameter, it is therefore a relevant variable for increasingmechanical performances of dense samples.Whenα is
considered an envelope deviation from perfect sphericity, it can control mechanical performances for large
strains. Finally, we present some remarks concerning the kinematics of the deformed samples: while some
polygon samples subjected to a vertical compression present large damage zones (any polygon shape), dense
samples made of clumps always exhibit thin reflecting shear bands.
search project (http://www.
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1. Introduction

A typical numerical approach to discrete element modeling of
granular materials is to use simple shapes of particles (discs in 2D [1]
or spheres in 3D [2]). Although the computation time is short using
this method, these models cannot reflect some of the more complex
aspects of real granular media behaviour, such as high shear
resistance or high volumetric changes [3]. In order to model these
mechanisms properly, physical phenomena (resistance to inter-
granular rolling [4–6]) or other grain shapes (sphere aggregates [7]
or polyhedral grains [8]) must be used. The influence of grain shape is
not yet fully understood. In this article, we will present our findings
concerning the influence of grain shape (grain concavity in particular)
on the mechanical behaviour of granular assemblies. We compared
two groups of grains — convex irregular polygons and non-convex
aggregates of three overlapping discs.

2. Granular model

The granular model used consists of 5000 polydisperse 2D frictional
particles. Two kinds of grain shape are used: convex irregular polygons
with six edges and non-convex particles made of aggregates of three
overlapping discs called clumps. These two shapes were chosen because
of the similarity of their global contour (polygonal grains can be seen as
a polygonal envelope of clumpsmade of three discs). As shown in Fig. 1,
particle shape is defined by a parameter α = ΔR

R1
, where R1 denotes the

ex-circle radius of the particle and ΔR is the difference between the ex-
circle and the in-circle radii, [9,10]. The in-circlemust be fully contained
in the particle. For non-convex clumps, α ranges from 0 (circle) to 0.5.
For convex polygonal grains, α ranges from 1−

ffiffiffi
3

p

2
≃ 0:13 (regular

hexagons) to 0.5 (equilateral triangles). Some of the shapes used are
presented at the bottom of Fig. 1. For each chosen α, granular samples
are made of polydisperse particles: the polydispersity of grains is
determinedby the radii of thegrain ex-circle. In each sample, the chosen
radii R1 are such that the areas of the ex-circles are equally distributed
between Sm=π(Rm)2 and SM=π(RM)2=π(3Rm)2.

3. Discrete Element Method

Two-dimensional numerical simulations were carried out using the
Discrete Element Method according to the principles of Molecular
Dynamics (MD) [11]. Two codes were used: PFC2D by ITASCA [12] for
clump simulation and a code capable of dealingwith polygonal particles
that was developed at the laboratory. Both codes use the same contact
laws for contact forces computations [13]: grains interact in their
contact pointswith a linear elastic lawandCoulomb friction. Thenormal
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Fig. 1. Particle shape definition: α = ΔR
R1

and examples of clump and polygon particle
shapes used.
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contact force fn is related to thenormal interpenetration (or overlap)hof
the contact

fn = kn·h ; ð1Þ

as fn vanishes if contact disappears, i.e. h=0. The tangential
component ft of the contact force is proportional to the tangential
elastic relative displacement, according to a stiffness coefficient kt. The
Coulomb condition | ft| ≤ μ fn requires an incremental evaluation of ft
in every time step, which leads to some amount of slip each time one
Fig. 2. Contacts between the particles; contact definition and classification. (a) Definition o
contact. (b) Various types of possible contacts between clumps. Analogy between clump an
contact between two polygon edges two contact points are considered while only one if th

Fig. 3. Fragments of two confined dense samples with α=
of the equalities ft=±μ fn is imposed (μ corresponds to the contact
friction coefficient). A normal viscous component as opposed to the
relative normal motion of any pair of grains in contact is also added to
the elastic force fn. Such a term is often introduced to facilitate the
mechanical equilibrium approach [14]. In case of frictional assemblies
under quasi-static loading, the influence of this viscous force (which is
proportional to the normal relative velocity, using a damping coefficient
Gn) is not significant [15] (elastic energy is mainly dissipated by
Coulomb friction). Finally, the motion of grains is calculated by solving
Newton's equations using either a leap-frog (in PFC2D) or third-order
predictor–corrector discretisation scheme [16] (in the in-house soft-
ware). This constitutes the only known difference between the two
codes.

The principles of disc contact detection are well known [13,17],
and contact detection for clumpswas solved in the sameway: contact
occurs at a point, the normal force value fn is calculated with Eq. (1)
and its direction connects the centers of discs in contact, Fig. 2(a).
Contact detection and contact force calculations between polygons
do not use classical methods based on the area overlap between
polygons [18–21]. The shadow overlap technique proposed by J.J.
Moreau [22], which was originally applied within the Contact
Dynamic approach [23] for convex polygonal particles, was used. In
our study this technique was adapted to the MD approach. Three
types of geometrical contact can exist between polygons: Corner-to-
Corner, Corner-to-Edge (CE) and Edge-to-Edge (EE). Corner-to-
Corner contacts are geometrically (or mathematically) realistic but
never occur in our simulations because of the numerical rounding
errors. When dealing with (EE) contact, contact detection involves
two contact points and their associated overlaps h, Fig. 2(b). This is
the main difference compared to the classical method (area overlap
f a contact between clumps. Normal contact vector connects the centers of the discs in
d polygon contacts: corner-to-edge (CE) and edge-to-edge (EE) groups. Note that for a
ere is a contact between a corner and an edge.

0.3. Sample PD .30 on the left and CD .30 on the right.
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Fig. 4. Solid fraction ξ of the samples under isotropic loading versus α. Error bars
correspond to standard deviation calculated using of four samples. The round and square
symbols represent samples made of clumps and polygons, respectively. The black and
white symbols represent dense and loose samples, respectively. This convention will be
maintained hereafter.

Fig. 5. Corner-to-edge contacts ((CE) see Fig. 2(b)) percentage in the isotropic state, εi.
Comparison between clumps and polygons.
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calculations) where only one contact is considered between the
edges.

Finally, we may be interested in the main contact law para-
meters: the normal and tangential stiffness, kn and kt, and the
friction coefficient μ. Assuming that samples would first be loaded
with a 2D isotropic stress σ0=10 kN/m, the normal stiffness of
contact kn was calculated according to the dimensionless 2D stiffness
parameter κ=kn /σ0 [15,24–26]. κ expresses the mean level of
contact deformation, 1/κ=h / 〈2R〉, where 〈R〉 is the mean particle
radius. In our simulations, κ was arbitrarily set to 1000. As a
comparison, a sample made of glass beams under isotropic loading
of 100 kPa reaches κ=3000. The tangential stiffness kt can be
expressed as a fraction of the normal stiffness, k̃ = kt = kn, k̃ N 0. k̃ N 1
may exhibit specific behaviour where Poisson coefficient of grain
assemblies become negative [27–30]. Running several numerical
simulations with various k̃, 0 b k̃ ≤ 1, [25] have shown that if 0:5 ≤
k̃ ≤ 1, the macroscopic behaviour remains similar. Thus we arbi-
trarily set k̃ to 1.
4. Sample preparation — isotropic compression

Granular samples of 5000 grains are prepared in three steps:
preparations startwith a random spatial distribution of particle position
inside a square made of four rigid walls. Secondly, the particles expand
slowly until σ0=0.5 kN/m is reached. Finally, samples are isotropically
loaded by wall displacement up to σ0=10 kN/m. To obtain samples
with different solid fractions, we may use various values of the inter-
granular friction coefficient μ during the preparation [31]. When μ is set
to zero, samples isotropically loaded up to σ0=10 kN/m are dense and
the Solid fraction ismaximal. When a strictly positive value of μ is used
instead, samples become looser and Solid fraction decreases. In our
studydense sampleswerepreparedwithμ=0and the looseoneswith μ
equal 0.5. 16 different samples (4 dense, 4 loose made of clumps and
4 dense,4 loose made of polygons) for each α value were prepared.1

Dense samples will be written as CD or PD respectively for Clumps and
Polygons. Loose samples will be denoted as CL or PL . A subscript can be
added. It then corresponds to thedecimal part of the shapenumberα. As
an example, fragments of two dense samples with α=0.30, CD.30 and
PD.30 , are displayed in Fig. 3.
1 All the analyses presented in this article were carried out on mean results
calculated over 4 samples of each density and each α. Associated Standard Deviations
will always be given, even if they are too small to be significant.
For both clumps and polygons, contact between particles can occur
at more than one contact point. There are four contact possibilities for
clumps: single contact Fig. 2(b)(i) double contact involving three discs
Fig. 2(b)(ii), double contact involving four discs Fig. 2(b)(iii) and triple
contact Fig. 2(b) (iv). By analogy with polygon contacts (Edge-to-Edge
or Corner-to-Edge, Fig. 2(b)), all these contacts between clumps can be
merged into two groups, (CE) and (EE). In the (CE) group, grains
involved in a single contact (i) may rotate without sliding. Double
contact (ii) allows rotationwith sliding and eventually friction. Rotation
and sliding of polygons meeting at a single contact point are not
correlated. Group (EE) contacts block the rotation of the grains. In the
case of rotation of grains, contacts of this type would be lost. Therefore,
the shape of the grains can be regarded as macro roughness.

For samples subjected to isotropic loading, we focus on two
internal parameters thatmainly determine themechanical behaviour:
the Solid fraction ξ and the coordination number z⁎. Fig. 4 shows the
evolution of ξwith α for dense and for loose samples. For CD samples,
ξ evolution is bell-shaped and maximum Solid fraction is reached for
0.2≤α≤0.3. Similar observations were made by [9,10]. This also
seems to be the case for CL samples although the amplitude of the
bell-shaped curve appears to be lower. The geometrical origin of these
results deals with the grain shape (concavity and grains envelope)
and imbrication and the interlocking between grains, but appears to
be complex to establish. While we might think that when two grains
are in contact with a single point of contact (contact (CE)-type (i),
Fig. 2(b)), this would tend to increase the local porosity and thus
reduce the overall Solid fraction; this does not seem to be the case:
Fig. 6. Coordination number z⁎ values vs. α under isotropic loading. The round and
square symbols represent samples made of clumps and polygons, respectively. The
black and white symbols represent dense and loose samples, respectively.
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Fig. 5 shows clearly that for CD samples, the proportion of contact
(CE)-type (i) is at its maximum for 0.2≤α≤0.3 in the case of dense
samples and decreases linearly with α in the case of CL samples. This
completely goes against the ξ trend, even if it is clearly established
that when ξ is high (CD samples), the proportion of (CE)-type (i)
contacts is lower than in the case where the Solid fraction is low
(CL samples).

For samples made of polygons, the dependence of ξ on α is not
clear either. For PD samples, ξ is almost constant for 0.2≤α≤0.3. If we
exclude the PD.40 sample, which behaves in a peculiar way, we can
notice that for samples made of grains with regular shapes,
corresponding to α=0.13 and α=0.5, the Solid fraction ξ is smaller
than for samples made of grains which have shape irregularities
(0.13bαb0.5). The relationship between ξ and the percentage of
(CE)-type (i) contact is again impossible to establish. Furthermore, it is
worth observing that when 0.2≤α≤0.3, CD and PD samples show
very similar Solid fraction. Here, grain envelope seem to be a cleverer
interpretation of α parameter than grain imbrication, which is only
relevant for clumps. Finally, we should note that the angle of friction
used during the preparation does not seem to have a major influence
on the Solid fraction of samples made of polygons when 0.2bαb0.3.

For samples subjected to isotropic loading, we studied the
coordination number z* corresponding to themean number of contacts
per grain. Here only grains that have two or more compression forces,
and therefore take part in the load transfer, were considered. For
samples made of frictionless perfectly rigid discs, z⁎=4 [32]. Because
κ is not infinite in our study, in the samples made of frictionless
circular particles (CD.00 ), z⁎=4.093±0.005 is greater but still very
close to the reference value. z⁎ is evaluated for clumps and polygons
Fig. 7. Macroscopic η−ε1 curve
and both dense and loose samples. The dependence of z⁎ according to
α is shown in Fig. 6. For CL samples, z⁎ increases linearly with α, like
PL samples, but for CL , it can be directly correlated to the percentage
of (CE)-type (i) contacts which decrease with α, and then increase z⁎.
For dense samples, the percentage of (CE)-type (i) contacts did not
vary too much. z⁎ is constant for CD and PD samples.

5. Macromechanical response of granular assembly loaded in
vertical compression test

The samples were tested in a 2D strain controlled vertical com-
pression test, also called biaxial test. Vertical stress σ1 was applied by
increasing the compressive vertical strain ε1 while lateral σ3 remained
constant. The loading velocities were chosen according to the

dimensionless inertial number I = ε̇1

ffiffiffiffiffiffiffi
〈m〉

σ3

r
[26] where ε̇1 denotes the

strain rate and 〈m〉 the typical mass of a grain. It describes the level of
dynamic effects in the sample. For quasi-static evolutions, the value of I
should be low. I value was set to 5⋅10−5 for clumps and for polygons
samples, regardless of the code used. During the vertical compression in
both dense and loose samples, the same value of contact friction
coefficient μ=0.5 was used. The mechanical responses of the samples
are plotted on η vs. ε1 charts and shown in Fig. 7. η=t /s, t=(σ1−σ3)/2
is half of the deviator stress and s=(σ1+σ3)/2 is the mean stress.
Extracted from η−ε1 curves shown in Fig. 7, friction angles at the peak
ϕp and at the threshold ϕt are given Fig. 8(a). Average dilatancy angles
extracted from Fig. 9 are presented in Fig. 8(b).

For dense samples made of clumps, CD , we can observe in Fig. 7(a)
that the macroscopic shear resistance increases with α. Although
s for some of the samples.

image of Fig.�7


Fig. 8. (a) Friction angles vs. α for clumps and polygons samples. The two upper curves
correspond to friction angles at the peak ϕp of dense samples. The four other curves
show friction angles at the threshold ϕt, either for dense or loose samples. (b) Dilatancy
angles for all the samples; Values of the angles for dense samples were calculated at the
peak, between [1.5–2.5%] ε1; For loose ones, the range was [6–7%] ε1.
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CD.10 implies grains with a small α, the mechanical response of the
sample exhibits remarkable increase of the maximum deviator in
comparison to disc samples CD.00 where rotations of particles are not
potentially disturbed by the grain shape. For CL samples, there is no
peak value of the friction angle, ϕp=ϕt, Fig. 7(c). Thus, for all clump
samples, both peak ϕp and threshold ϕt friction angle values increase
along with α. ϕt increases proportionally with α while the increase of
ϕp is nonlinear and seems to be asymptotic for α≥0.4.

For PD samples, ϕp values slightly decrease linearly along α, while
ϕt values increases, Fig. 8(a).

For PL samples, we can notice in Fig. 7(d) that the macroscopic
curves show typical behaviour similar to that of loose samples when
αb0.3 and a typical behaviour characteristic of dense samples for
αN0.3. This kind of behaviour deals with the values of the initial Solid
fraction of the samples shown in Fig. 4 where we can observe that ξ
values for PD and PL samples are very close when α≤0.3. If we focus
only on ϕt for PL samples, we can observe (Fig. 8(a)) an increase of the
friction angle with α, except for samples made of triangles, α=0.5,
which always behave in a specific way.2 In conclusion, it can be noted
that adding some shape irregularity by increasing α always leads to an
increase of themacroscopic angle of friction in the critical state. This is
the case for clumps and polygons with a constant microscopic friction
angle μ.
2 Note that triangle is the only shape with 3 edges.
This influence of grain geometry is in line with a previous study by
Salot et al. [7]. Lastly, as we can see in Fig. 7, α does not explicitly
influence Young's modulus. E is linked to the rigidity matrix and
therefore to z⁎ [33], which is constant for dense samples (Fig. 6).

Similarly, particle concavity does not particularly influence the

average dilatancy angle ψ values sinψ = dε1 + dε3
dε1−dε3

� �
of dense and

loose clump samples (Fig. 8(b)). On the other hand, ψ is lower for
polygons with higher values of α (closer to triangular shape) than for
those more similar to hexagons.

In Fig. 9, volumetric changes in some samples are illustrated. For
both dense clump and polygon samples, Fig. 9(a) and (b), the volume3

increases mainly during vertical compression, after a small contrac-
tion due to the stiffness of the contacts [15]. The volumetric increase
for CD samples is quite similar from one α to another (Fig. 9(a)). On
the other hand, α clearly influences the volumetric change of PD
samples but this influence seems erratic. Nevertheless, PD samples
show greater total dilatancy than CD samples. CL samples (Fig. 9(c))
behave like loose sands and contract all throughout the compression
test. It is more complex for PL samples (Fig. 9(d)) for which the
setting-up process remains problematic for some values of α.

6. Micromechanical analysis

From the macroscopic results exposed in the previous section, two
main observations can be established: for dense samples made of
clumps, the evolution of the angle of friction at the stress peakϕp varies
significantly with α. The geometrical imbrication between grains in
contact, which depend onα, may be one of themicromechanical origins
of these results. Secondly, for all samples, dense or loose, made of
clumps or polygons, it was established that the angle of friction ϕt at the
end of biaxial tests increases with α and is independent of the initial
state. This result is a proof of the role of the grain envelope in the
mechanical behaviour rather than some inter-granular imbrication
considerations. In this section we will try to gather evidence for these
proposals.

6.1. Contact proportion evolution for dense samples made of clumps

Single contacts are mainly involved in all the grains samples
tested, Fig. 5 ((CE) contacts for polygons or (CE)-type (i) contacts for
clumps — Fig. 2(b)). During loading, it can be noted that the
percentage of single contacts increases. Because dense samples were
prepared with no friction, Solid fraction of each assemblies of grains
subjected to isotropic loading is constant and always maximal. As a
consequence, even if samples can exhibit slight contractancy (related
to dimensionless contact stiffness κ, [34]), the total number of
contacts in each sample during a vertical compression systematically
decreases. Therefore, in order to compare different contact type
proportions in different phases of the test, we suggest balancing the
decrease in the total number of contacts using the coefficient
ω⁎=Nεb

⁎ /Nεa
⁎ . Nεa

⁎ and Nεb
⁎ represent the total number of neighbouring

contacts4 at the given vertical strains ε1 (εa or εb) in the samples. Here,
we suggest focusing on the evolution of two new contact groups for
clumps:

• (SC) single contact between grains, known as simple contact,
• (CC) multiple contacts between grains, hereafter called complex
contacts.

These two new groups can be examined in Fig. 10.
We observed the evolution of clump contact numbers of each

group between two successive stages by normalising this evolution
3 For convenience we resort to the vocabulary pertaining to 3D triaxial tests.
4 When two grains are in contact via 1, 2 or 3 contact points, only one contact is

counted.
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Fig. 9. Volumetric changes (computed in 2D corresponding to the area) during vertical compression for loose and dense samples made of clumps and of polygons. Positive −εv
implies an increase of the sample volume.
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with ω⁎. We thus defined a new variable λ=ω⁎ ⋅Nεa /Nεb, where Nεa
and Nεb denote the number of (SC) or (CC) on two different levels εa
and εb of the vertical strain ε1. In Fig. 11(a), λ evolution is calculated
between εa=εi (isotropic state) and εb=εp (maximum stress
deviator). We can observe that for α=0.10, λ is smaller than 1 for
(CC) and greater than 1 for (SC). This can be regarded as a transfor-
mation of (CC) into (SC) between these two stages. If all the complex
contacts transformed into simple, graphic points were at an equal
distance from 1, 1−λ(CC)=λ(SC)−1. If 1−λ(CC)Nλ(SC)−1, it means
that some complex contacts transform into simple contacts but some
of them also disappear.

When α goes to 0.5, these transformations are still active but with
less intensity. Geometrical imbrications between clumps increase
with α and are “more difficult to lose” during the biaxial tests. It is
also interesting to observe that λ seems to reach a threshold when
Fig. 10. Contact types for clumps and polygons: simple contacts (SC) and complex
contacts (CC).
α≥0.4, Fig. 11(a). This last observation can be correlated to the
evolution of ϕp, which also reaches a threshold for the same value of
α, Fig. 8(a).

Focusing on λ between the peak and the critical state, εa=εp
and εb=εc, Fig. 11(b), we can observe that the increase of simple
contacts is small for every α (λ(SC)−1≤0.1) and complex contacts
are mainly lost 1−λ(CC)N0.1, especially when α is small. The greater
α is, the smaller the proportion of complex contacts lost (grain
imbrications are destroyed less). This may be a clue that ϕt of clumps
increases with α, as seen in Fig. 8(a). Nevertheless, some new inves-
tigations on the evolution of contact orientations are proposed in
the next section.

6.2. Evolution of contact fabric for CD samples

Contact direction and its evolution during the vertical compression
tests are often analysed [35]. Focusing on the first part of the
mechanical behaviour, from the isotropic state to the stress peak for
example, it is well known that in dense samples, contacts are mainly
lost in the extension direction and gained in the direction of
compression, [36]. In Fig. 12(a) to (d), for two values of α, we present
statistical analysis of the evolution of contact direction by the
evaluation of PðθÞ = Nεb ðθÞ=Nεa ðθÞ , where εa and εb correspond to
two successive vertical strains levels and where Nεx(θ) is the number
of contacts in the direction θ. PðθÞ = 1 expresses that the number of
contacts in the direction θ remains constant between the two
configurations studied. If PðθÞ = b1 , contacts are lost and if PðθÞN1,

image of Fig.�9
image of Fig.�10


Fig. 11. Transformation of complex clump contacts into simple contacts, quantified by λ
and evaluated between the εi and εp for figure (a), and between εp and εc for figure (b).
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contacts are gained in the direction θ. Integrated over θ, 〈P〉 is a global
evaluation of the proportion of gained or lost contacts.

We focus on the evolution of contact anisotropy between the
isotropic state and the peak, Fig. 12(a) for α=0.2 and Fig. 12(c) for
α=0.5, we can observe that there is no contact gain in any direction:
in the compression direction, the number of contacts remains
constant PðθÞ≃1 and the number of contacts decreases in the
extension direction PðθÞb1. The mean value of P over θ is smaller
than 1 for both α discussed here and also for the other α studied.
During the vertical compression of CD , sample contacts are mainly
lost. Finally, we noticed that the greater α is, the smaller the amount of
contacts lost in the extension direction. By analysing the contacts
change in direction between the peak and the critical state, εp to εc,
Fig. 12(b) and (d), opposite tendencies emerge: contacts are mainly
lost in the compression direction and gained in the extension
direction, with a less intensive effect for α=0.5, Fig. 12(d). At this
stage of analysis, we are not yet able to distinguish the nature of the
contacts involved in these observations. An analysis of clustered
contacts, as outlined below, is thus necessary.

We now suggest the same contact direction analysis but for (SC) and
(CC) groups (simple and complex contacts). Statistical analysis of the
evolution of contact orientation from the isotropic state εi to the peak εp
for (SC) and (CC) groups is shown in Figs. 12(e) to (h). On one hand,
Fig. 12(e) and (f) show that in the compression direction (SC) contacts
are gained (α=0.2) or are kept (α=0.5). (SC) contacts are mainly lost
in the extensiondirection,withamorepronounced amplitudewhenα is
small. On the other hand, we can observe that (CC), Figs. 12(g) and (h),
are lost in every direction with some variations depending on θ. Never-
theless, complex contacts are more persistent when α is greater (〈P〉. is
greater for α=0.5 because of grain imbrications).
The statistical analysis of the evolution of contact direction between
the peak εp and the critical state εc shown in the Figs. 12(i) to (l) confirms
the tendency shown in Figs. 12(b) and (d): simple and complex contacts
are lost in the compression direction. For (SC) with α=0.2, 〈P〉= 1,
Fig. 12(i): although the number of (SC) decreases in the compression
direction and increases in the extension direction, the number of simple
contacts remains constant during the mechanical test from the peak to
the critical state.When α=0.5, the number of simple contacts decreases
〈P〉 = 0:9, especially in the compression direction. Complex contacts are
the ones that are lost the most (〈P〉 is always lower than 1, regardless of
the value ofα). Nevertheless, it is desirable tomake adistinctionbasedon
α: the amount of (CC) lost is smaller for α=0.5 (〈P〉 = 0:8, Fig. 12(k))
than for α=0.2 (〈P〉 = 0:7, Fig. 12(l)). The proportion of (CC) lost in the
compression direction is bigger for α=0.2, like if vertical contact chains
were more unstable or less persistent when α tends to 0.

Further studies, taking into account the intensity of contact forces
and their propensity to be stronger in the case of complex contacts
[37] would provide more certainty about possible links between the
observations made above and improvement of the mechanical
property ϕt measured at εc, Fig. 8(a).

6.3. Evolution of comparative contact proportions in compression tests
for clumps and polygons

Focusing on the critical phase only, contact observations are now
based on the division into two contacts groups corner-to-edge (CE)
and edge-to-edge (EE) (Fig. 2(b)). The evolution of (CE) contacts
according to α is shown in Fig. 13. (EE) contacts can be easily deduced
by subtracting (CE) contacts percentage from 100%. On one hand, the
percentage of (CE) contacts does not depend on the initial Solid
fraction of the sample; dense and loose samples exhibit a similar
trend. On the other hand, (CE) contact percentages for CD and CL
samples decrease linearly with α. A different tendency is observed for
PD and PL samples where the contact percentage remains more or
less the same except for α=0.5. We can even observe that when
α=0.5, (CE) contacts and (EE) contact percentages are close: for this
special value of α, clump and polygon envelopes converge.

6.4. Influence of shape on local strain analysis

We focused on the strain localisation in the samples in order to study
themacroscopic rupture and its origin. Two approacheswere used: local
strainmaps and shear localisation indicator S2 [38]. By comparing particle
kinematics in the isotropic state ε1=εi=0and in thedeformed stage ε1,
we calculated local strains using Delaunay triangulation as in [36]
(Delaunay triangle corners correspond to themass centers of particles).
Using the second strain invariant, Iεd=εI−εII, where εI and εII are
respectively themajor and theminor principal strains, we illustrate the
shear localisation in Fig. 14. We should notice that such shear
localisation patterns, also called shear bands, are often observed on
granular materials confined by more or less rigid boundaries, or even
numerical or experimental considerations [36,39–41]. Even if the
number of shear bands depends on the macroscopic strain levels
applied to samples, different patterns (multiple shear zones) seem to
exist when periodic boundary conditions are used [42].

The shear localisation indicator S2 is defined as

S2 =
1
Nt

∑
Nt

i=1
Iεd

 !2

∑
Nt

i=1
I2εd

; ð2Þ

where Iεd is the second invariant of the strain tensor and Nt is the total
number of Delaunay triangles. In a sense, value of S2 can be regarded
as a percentage of a distorted sample area.
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Fig. 12. CD samples. Histogram analysis of the evolution of contact directions for all the contacts (panels (a) to (d)) or for (SC) and (CC) (panels (e) to (l)). Histograms calculated over 25
classes of 7.2∘ each, between two successive strains levels: εi to εp for the panels (e) to (h) and εp to εc for thefigures (i) to (l).When all the contacts are taken into account (panels (a) to (d)),
the statistics are calculatedover approximately 40,000 contacts for the isotropic state, 30,000 contacts at thepeakand29,000 at the critical state. The circle radiusdrawn indashed line is 1.

Fig. 13. Corner-to-edge contacts ((CE) see Fig. 2(b)) percentage at critical state, εc.
Comparison between clumps and polygons.
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Fig. 15 gives the evolution of S2 according to ε1 for several dense
and loose samples made of clumps and polygons. Regardless of the
sample studied, the sheared area always reaches a maximumwhich is
at least greater than 50%. From evolution of S2, we may encounter two
types of behaviour: samples for which S2 reaches a maximum and
then decreases and stabilises, and a second type where S2 increases
asymptotically towards a maximum.

We have observed that when S2 reaches a maximum and later
decreases to reach a threshold value, it always corresponds to samples
which were identified as dense samples because ϕpNϕt (for example
CD.50 , PD.24 , PL.28 samples of the Fig. 14). On the contrary, when
ϕp∼ϕt, samples can be classified as loose samples. In this case, S2
continuously increases from ε1=0 to 10% to eventually reach a
threshold close to S2≃60%.

In the case of dense samples, the asymptotic value of S2 is
interesting because it clearly shows higher values for PD samples than
for CD samples. Coupling this quantitative result with the qualitative
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Fig. 14. Shear maps on dense samples made of grains with α=0.3 calculated from the
isotropic state to ε1=13.5%. Black square symbols are proportional to the amplitude of
the second invariant of the strains Iεd.
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observation of shear maps like in the Fig. 14, it is obvious that localised
zones in PD samples are wider than in CD samples. This result is con-
sistentwith the overall dilatancyof samples: PD samples globally expand
more than CD ones. For loose samples, the sheared area always cor-
responds to approximately 60% of the samples, regardless of the grain
shape.
7. Conclusions and discussion

The aim of this article was to present some new investigations on
the mechanical influences of particle shape in granular assemblies in
Fig. 15. Shear indicator evolution during a vertical compression.
the framework of numerical simulations performed with Discrete
Element Method. First, a grain geometry parameter α was defined by
the CEGEO research team. For particles called clumps, made of 3
overlapping discs, α is a measure of the grain concavity. 6-edged
convex polygonal grains were also ruled by α. The overall envelope
depending on α for each type of particles used in the studied granular
model was the common feature. Our numerical simulations were
performed with the Discrete Element Method adapted to each grain
shape. For particles made of discs (clumps), the commercial code
PFC2D by ITASCA was used. For polygonal particles, we developed our
own computer code which implements special contact detection
between objects in the framework of Molecular Dynamic approach. In
this article, we highlighted that changing the grain geometry, influences
granular assembly mechanical behaviour under the classical vertical
compression test in 2D. More complex grain shapes allow higher levels
of internal friction angle and large volumetric strains to be reached
compared to simple discs. Some clear differences in the behaviour of
polygon (convex) and clump(non-convex) assemblieswere shown.We
should also note that the particle shapes chosen also demonstrate
similarities, caused by the global envelope, that justify the comparison.
The generation and compaction of granular assemblies were presented.
By using two extremevalues of the inter-granular friction angle μ, dense
and loose sampleswere prepared, both for samplesmade of clumps and
polygons.

Firstly, by focusing on themacroscopic mechanical behaviour of our
granularmodelwe show that loose samples composed of polygonswith
low values of α present behaviour typical tomoderately dense granular
samples. For these granular materials, the initial contracting stage was
not only due to contact stiffness, but was also influenced by large inter-
granular reorganisation. Apart from this, loose and dense samples of all
shapes behaved as expected (loose samples only show contracting
behaviour while dense ones mostly exhibit major dilatancy), showing
similar behaviour when discussing friction residual angles ϕt or contact
percentages. All samples show higher values of internal friction angles
ϕp and ϕt than samplesmade of only circular grainswhere each particle
is a disc. The correlationsbetween shapeparameterα and friction angles
are different for clumps and polygons. On one hand, for dense clump
samples ϕp increases with α and seems to reach an asymptotic value
ϕp=40∘. On the other hand, ϕp linearly decreases when α shifts from
0.13 to 0.5. In this case, the particular case of the triangular shape
(α=0.5) is also discussed briefly. The overall dilatancy of clump
samples is greater than that of disc assemblies, but spectacularly smaller
than dilatancy of polygons.

Secondly, on the granular scale, we suggested correlating macro-
scopic observations bymeans of contact evolution analysis,which led us
to introduce several groups of contacts between particles. Thus, we
observed that multiple contacts between clumps transform into simple
contacts and that this process depends on the size of concavities, i.e. α.
We tend to associate thiswith an increase of shear resistance in the case
of dense granular samples made of clumps. However, for a better
understanding of the role of α in the magnitude of contact forces and
their influence on the macroscopic repercussions, complementary
studies need to be carried out.

Focusing on granular assembly failure, we studied the localisation of
shear bands and tried to characterise it by a scalar. It was observed that
reflecting shear bands were thinner in dense samples made of clumps
than in those made of polygons, regardless of the α type, thus
highlighting the evident effects of the geometrical imbrications of
clumps. Polygon samples gradually create wide shear bands, while for
samples made of clumps, the appearance of shear bands are more
immediate.

Although the meaning and implications of the parameters α have
been presented in this article, it needs to be clarified further.
Nevertheless, from the comparisons between polygons and clumps,
two trends seem to emerge: for very dense samples made of clumps, a
large α naturally implies imbrications between particles. α is thus a
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measure of clump concavity. With the simulations exposed in this
article, we can deduce that the larger the concavities are, the higher
the angle of friction at the peak ϕp is.

For the samples made of polygons, this does not apply. Indeed,
there are no imbrications between the grains and α is thus a measure
of grain sphericity. We have shown that in dense samples made of
polygons, the percentage of a single contact in the isotropic state
increases with α. In corollary, we can observe that the angles of
friction peak decrease slightly with α.

For loose samples PL or CL, or for PD and CD samples close to the
critical state, ϕt is the parameter which characterises the failure. We
have shown that for large strains, contacts between grains are mostly
single. Therefore, clump imbrications are less involved in the evolution
of ϕt. Furthermore, ϕt, which increases linearly with α, increases with
the same rate regardless of the grain shape. α should thus be only
regarded as a parameter of spherical grains.
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